Skip to main content
Log in

Stability of Partial Functional Integro-Differential Equations

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Using the Fourier method of separation of variables and a procedure proposed in this paper, namely, reducing integrodifferential equations to systems of ordinary differential equations, the exponential stability of partial functional integro-differential equations is studied. Various tests for the exponential stability are proposed. In contrast to many other known methods our approach does not assume the smallness of integral terms. This allows us to use the method for stabilization of processes described by unstable differential equations by adding controls in the form of integral terms. Finally, using our approach, a phase transition model is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the theory of functional-differential equations [in Russian]. Nauka, Moscow (1991).

    Google Scholar 

  2. 2. T. A. Burton, Volterra integral and differential equations. Academic Press, New York (1983).

    Google Scholar 

  3. 3. A. D. Brjuno, Local method of nonlinear analysis of differential equations [in Russian]. Nauka, Moscow (1979).

    Google Scholar 

  4. 4. C. Corduneanu, Integral equations and stability of feedback systems. Academic Press, New York (1973).

    Google Scholar 

  5. 5. C. Corduneanu, Some problems concerning partial stability. Sympos. Math. 6 (1971), 141–154.

    MATH  MathSciNet  Google Scholar 

  6. 6. C. Corduneanu, Integral equations and applications. Cambridge Univ. Press, Cambridge (1991).

    Google Scholar 

  7. 7. B. P. Demidovich, Lectures on the mathematical theory of stability [in Russian]. Nauka, Moscow (1970).

    Google Scholar 

  8. 8. A. Domoshnitsky, New concept in the study of differential inequalities. Funct. Differ. Equ. 1 (1993), 52–59.

    MATH  MathSciNet  Google Scholar 

  9. 9. A. Domoshnitsky, About asymptotic and oscillation properties of the Dirichlet problem for delay partial differential equations. Georgian Math. J. 10 (2003), 495–502.

    MATH  MathSciNet  Google Scholar 

  10. 10. A. Domoshnitsky and Ya. Goltser, An approach to study bifurcations and stability of integro-differential equations. Math. Comput. Modelling 36 (2002), 663–678.

    Article  MathSciNet  Google Scholar 

  11. 11. A. D. Drozdov, Stability of integro-differential equations with periodic operator coefficients. Quart. J. Mech. Appl. Math. 49 (1996), 235–260.

    MATH  MathSciNet  Google Scholar 

  12. 12. A. D. Drozdov, Explicit stability conditions for integro-differential equations with periodic coefficients, Math. Methods Appl. Sci. 21 (1998), 565–588.

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. A. D. Drozdov and M. I. Gil, Stability of linear integro-differential equations with periodic coefficients. Quart. Appl. Math. 54 (1996), 609–624.

    MathSciNet  Google Scholar 

  14. 14. A. D. Drozdov and V. B. Kolmanovskii, Stability in viscoelasticity. North Holland, Amsterdam (1994).

    Google Scholar 

  15. 15. M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity. SIAM Stud. Appl. Math., Philadelphia (1992).

    Google Scholar 

  16. 16. J. D. Ferry, Viscoelastic properties of polymers. Wiley, New York (1970).

    Google Scholar 

  17. 17. J. M. Golden and G. A. C. Graham, Boundary value problems in linear viscoelasticity. Springer-Verlag, Berlin (1988).

    Google Scholar 

  18. 18. Ya. Goltser and A. Domoshnitsky, Bifurcation and stability of integrodifferential equations. Nonlinear Anal. 47 (2001), 953–967.

    Article  MathSciNet  Google Scholar 

  19. 19. M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31 (1968), 113–126.

    Google Scholar 

  20. 20. G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations. Cambridge Univ. Press, Cambridge (1990).

    Google Scholar 

  21. 21. J. K. Hale and V. Lunel, Introduction to functional differential equations. Springer-Verlag, New York (1993).

    Google Scholar 

  22. 22. T. Hara and R. Miyazaki, Equivalent condition for stability of Volterra integro-differential equations. J. Math. Anal. Appl. 174 (1993), 298–316.

    Article  MathSciNet  Google Scholar 

  23. 23. M. I. Imanaliev et. al, Integral equations. Differ. Uravn. 18 (1982), 2050–2069.

    MATH  MathSciNet  Google Scholar 

  24. 24. D. D. Joseph and L. Preziosi, Heat waves. Rev. Modern Phys. 61 (1989) 41–73.

    Article  MathSciNet  Google Scholar 

  25. 25. A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis [in Russian]. Nauka, Moscow (1972).

    Google Scholar 

  26. 26. M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stezenko, Approximate methods for solving operator equations [in Russian]. Nauka, Moscow (1969).

    Google Scholar 

  27. 27. N. N. Krasovskii, Stability of motion. Stanford Univ. Press, Stanford (1963).

    Google Scholar 

  28. 28. A. Novick-Cohen, Conserved phase-field equations with memory. In: Curvature flows and related topics (A. Damlamian, J. Spruck, and A. Visintin, eds.), GAKUTO Int. Ser. Math. Sci. Appl. 5, Gakkotosho, Tokyo (1995), pp. 179–197.

    Google Scholar 

  29. 29. A. Ponosov, A. Shindiapin, and J. Miguel, The W-transform links delay and ordinary differential equations. Funct. Differ. Equ. 9 (2002), 437–470.

    MathSciNet  Google Scholar 

  30. 30. L. S. Pontryagin, Ordinary differential equations [in Russian]. Nauka, Moscow (1982).

    Google Scholar 

  31. 31. J. Pruss, Evolutionary integral equations and applications. Monogr. Math. 87 (1993).

    MathSciNet  Google Scholar 

  32. 32. M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical problems in viscoelasticity. Longman, New York (1987).

    Google Scholar 

  33. 33. H. G. Rotstein, S. Brandon, A. Novick-Cohen, and A. Nepomnyashchy, Phase field equations with memory: the hyperbolic case. SIAM J. Appl. Math. 62 (2001), 264–282.

    MathSciNet  Google Scholar 

  34. 34. N. Roushe, P. Haberts, and M. Laloy, Stability theory by Lyapunov's direct method. Springer-Verlag, New York (1977).

    Google Scholar 

  35. 35. V. V. Rumyantsev and A. S. Oziraner, Stability and stabilization of motion with respect to part of variables [in Russian]. Nauka, Moscow (1987).

    Google Scholar 

  36. 36. G. E. Shilov, Mathematical analysis. Specialized course [in Russian]. Fizmatgiz, Moscow (1965).

    Google Scholar 

  37. 37. M. M. Vainberg and V. A. Trenogin, Branching theory of solutions of nonlinear equations [in Russian]. Nauka, Moscow (1969).

    Google Scholar 

  38. 38. J. H. Wu, Theory and applications of partial functional differential equations. Springer-Verlag, New York (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. P. Agarwal or A. Domoshnitsky.

Additional information

2000 Mathematics Subject Classification. 34K15, 35B05.

This research was supported by the program KAMEA of the Ministry of Absorption of the State of Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R., Domoshnitsky, A. & Goltser, Y. Stability of Partial Functional Integro-Differential Equations. J Dyn Control Syst 12, 1–31 (2006). https://doi.org/10.1007/s10450-006-9681-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-006-9681-x

Key words and phrases.

Navigation