Skip to main content
Log in

Simulated moving bed technology: old and new

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The Simulated Moving Bed (SMB) concept has been applied to the separation of different mixtures as a continuous counter current separation process, avoiding several problems related with solid motion. The aim of this work is to present some relevant examples of SMB separations corresponding to the two major ages in the use of the SMB concept, here named “old” and “new” applications. The “old” applications of SMB technology in the petrochemical industry are still important, with large and highly productive units; and the “new” applications of the second “age” of SMB concept are from the fine chemical, pharmaceutical and biochemistry areas, associated with the demand of high purity products during the last 10 years.

Different examples are presented for different ages: a UOP Parex ® process for the “old”, modelled with the equivalent True Moving Bed (TMB) approach; and a chiral resolution for the “new”, modelled by the real SMB model. Some of the latest developments are also mentioned: the non conventional techniques as the Varicol ® process, PowerFeed, Modicon, M3C or Enriched Extract-SMB (EE-SMB), MultiFeed (MF), Outlet Streams Swing (OSS) or Pseudo-SMB, involving considerable changes in the SMB concept itself. The use of the last optimization/modelling packages for the development of design techniques, either at the conception stage as well as for performance improvements of existing units is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, S., G. Erdem, M. Mazzotti, M. Morari, and M. Morbidelli, “Optimizing Control of Simulated Moving beds-Linear isotherm,” J. Chromatogr. A, 1033, 229–239 (2004).

    Article  CAS  Google Scholar 

  • Abunasser, N., Y.-S. Kim, Y.M. Koo, and P.C. Wankat, “One-Column Chromatograph with Recycle Analogous to a Four-zone Simulated Moving Bed,” Ind. Eng. Chem. Res., 42, 5268–5279 (2003).

    Article  CAS  Google Scholar 

  • Adam, P.R., M. Nicoud, and M. Bailly, O. Ludemann-Hombourger, U.S. Patent No 6,136,198, 2000.

  • Amanullah, M. and M. Mazzotti, “Optimization of a Hybrid Chromatography-Crystallization process for the Separation of Tröger’s Base Enantiomers,” J. Chromatography A, 1107, 36–45 (2006).

    Article  CAS  Google Scholar 

  • Amanullah, M., S. Abel, and M. Mazzotti, “Symposium on preparative and Industrial Chromatography and Allied Techniques,” Aachen, Germany, 2004.

  • Araújo, J.M.M., R.C.R. Rodrigues, and J.P.B. Mota, “Use of Single-Column Models for Efficient Computation of the Periodic State of a Simulated Moving Bed Process,” Ind. Eng. Chem. Res., 45, 5314–5325 (2006).

    Article  CAS  Google Scholar 

  • Azevedo, D.C. and A.E. Rodrigues, “Design of a Simulated Moving bed in the Presence of Mass-transfer Resistances,” AIChE J., 45(5), 956–966 (1999).

    Article  CAS  Google Scholar 

  • Bailly, M., R.M. Nicoud, A. Philippe, and O. Ludemann-Hombourger, “Method and Device for Chromatography Comprising a Concentration Step,” US patent No. WO2004039468, 2004.

  • Abdelmoumen, S., L. Muhr, M. Bailly, and O. Ludemann-Hombourger, “The M3C Process: A New Multicolumn Chromatographic Process Integrating a Concentration Step. I-The Equilibrium Model,” Sep. Sci. Tech., 41(12), 2639–2663 (2006).

    Article  CAS  Google Scholar 

  • Balannec, B. and G. Hotier, “From Batch Elution to Simulated Countercurrent Chromatography,” G. Ganetsos, and P.E. Barker (Eds.), in Preparative and Production Scale Chromatography, pp. 301–357, Marcel Dekker, New York, 1993

  • Blehaut, J. and R.-M. Nicoud, Analusis Mag., 26, M60 (1998).

    CAS  Google Scholar 

  • Borges da Silva, E.A. and A.E. Rodrigues, “Methodology for the Design of Chromatographic Multicomponent Separation by a Pseudo-Simulated Moving Bed,” AIChE J., 52(11), 3794–3812 (2006).

    Article  CAS  Google Scholar 

  • Broughton, D.B. and C.G. Gerhold, “Continuous Sorption Process Employing Fixed Bed of Sorbent and Moving Inlets and outlets,” U.S. Patent No 2,985,589, 1961.

  • Chiang, A.S.T., “Equilibrium Theory for Simulated Moving Bed Adsorption Processes,” AIChE J., 44(11), 2431–2441 (1998).

    Article  CAS  Google Scholar 

  • Danckwerts, P.V., “Continuous Flow Systems; Distribution of Residence Times,” Chem. Eng. Sci., 2, 2 (1953).

    Google Scholar 

  • DeVault, D., “The Theory of Chromatography,” J. Am. Chem. Soc., 65, 532 (1943).

    Article  CAS  Google Scholar 

  • Erdem, G., S. Abel, M. Morari, M. Mazzotti, and M. Morbidelli, “Automatic Control Of Simulated Moving Beds II: nonlinear isotherm,” Ind. Eng. Chem. Res., 43, 3895–3907 (2004b).

    Article  CAS  Google Scholar 

  • Erdem, G., S. Abel, M. Morari, M. Mazzotti, M. Morbidelli, and J.H. Lee, “Automatic Control of Simulated Moving Beds,” Industry Engineering Chemical Research, 43, 405–421 (2004a).

    Article  CAS  Google Scholar 

  • Glueckauf, E., “Theory of Chromatography part 10: Formula for Diffusion into Spheres and Their Application to Chromatography,” Trans. Faraday Soc., 51, 1540–1551 (1955).

    Article  CAS  Google Scholar 

  • Hashimoto, K., S. Adachi, Y. Shirai, and M. Morishita, “Operation and Design of Simulated Moving Bed Adsorbers” in G. Ganetsos, and P.E. Barker, Preparative and Production Scale Chromatography, (Eds.) pp. 273–300, Marcel Dekker, New York, 1993.

  • Helfferich, F. and G. Klein, Multicomponent Chromatography, Marcel Dekker, New York, 1970.

    Google Scholar 

  • Helfferich, F.G., “Multicomponent Ion Exchange in Fixed Beds: Generalized Equilibrium Theory for Systems with Constant Separation Factors,” Ind. Eng. Chem. Fundamentals, 6(3), 362–364 (1967).

    Article  CAS  Google Scholar 

  • Hur, J.S. and P.C. Wankat, “New design of Simulated Moving bed (SMB) for ternary separations,” Industry Engineering Chemical Research, 44, 1906–1913 (2005).

    Article  CAS  Google Scholar 

  • Hur, J.S. and P.C. Wankat, “Two-Zone SMB/Chromatography for Center-Cut Separation from ternary Mixtures: Linear isotherm Systems,” Industry Engineering Chemical Research, 45, 1426–1433 (2006).

    Article  CAS  Google Scholar 

  • Kasat, R.B. and S.K Gupta, “Multiobjective Optimization of an Industrial Fluidized Bed Catalytic Cracking Unit (FCCU) Using Genetic Algorithm (GA) with the Jumping Genes Operator,” Comput. Chem. Eng., 27, 1785–1800 (2003).

    Article  CAS  Google Scholar 

  • Kaspereit, M., K. Gedicke, V. Zahn, A.W. Mahoney, and A. Seidel-Morgenstern, “Shortcut Method for Evaluation and Design of a Hybrid Process for Enantioseparations,” J Chromatography A, 1092, 43–54 (2005).

    Article  CAS  Google Scholar 

  • Kawase, M., T.B. Suzuki, K. Inoue, K. Yoshimoto, and K. Hashimoto, “Increased Esterification Conversion by Application of the Simulated Moving Bed Reactor,” Chemical Engineering Science, 51, 2971–2976 (1996).

    Article  CAS  Google Scholar 

  • Kearney, M. and K.L. Hieb, U.S. Patent No 5,100,553 (1992)

  • Kim, J.K. and P.C. Wankat, “Designs of Simulated-Moving-Bed Cascades for Quaternary Separations,” Industry Engineering Chemical Research, 43, 1071–1080 (2004).

    Article  CAS  Google Scholar 

  • Kim, J.K., N. Abunasser, and P.C. Wankat, “Use of Two feeds in Simulated Moving Beds for Binary Separation,” Korean J. Chem. Eng., 22(4), 619–627 (2005).

    CAS  Google Scholar 

  • Kim, J.K., Y. Zang, and P.C. Wankat, “Single-Cascade Simulated Moving Bed Systems for the Separation of Ternary Mixtures,” Industry Engineering Chemical Research, 42, 4849–4860 (2003).

    Article  CAS  Google Scholar 

  • Klatt, H.-U., F. Hanish, G. Dünnebier, and S. Engell, “Model-Based Optimization and Control of Chromatographic Processes,” Comput. Chem. Eng., 24, 1119–1126 (2000).

    Article  CAS  Google Scholar 

  • Klein, G., D. Tondeur, and T. Vermeulen, “Multicomponent Ion Exchange in Fixed Beds: General Proprieties of Equilibrium Systems,” Ind. Eng. Chem. Fundamentals, 6(3), 339–351 (1967).

    Article  CAS  Google Scholar 

  • Kloppenburg, E. and E.D. Gilles, “Automatic Control of the Simulated Moving bed Process for C8 Aromatic Separation using Asymptotically Exact input/output Linearization,” J. Process Control, 9, 41–50 (1999).

    Article  CAS  Google Scholar 

  • Kruglov, V., “Methanol Synthesis in a Simulated Counter-current Moving Bed Adsorptive Catalytic Reactor,” Chemical Engineering Science, 49, 4699–4716 (1994).

    Article  CAS  Google Scholar 

  • Kurup, A.S., Subramani, H.J., Hidajat, K., and Ray, A.K., “Optimal Design and Operation of SMB Bioreactor for Sucrose Inversion,” Chemical Engineering Journal, 108, 19–33 (2005).

    Article  CAS  Google Scholar 

  • Kurup, A.S., K. Hidajat, and A.K. Ray, “Comparative Study of Modified Simulated Moving bed Systems at Optimal Conditions for the Separation of Ternary mixtures Under Nonideal Conditions,” Industry Engineering Chemical Research, 45(11), 3902–3915 (2006).

    Article  CAS  Google Scholar 

  • Langmuir, I., “The velocity of Reactions in Gases moving Through Heated Vessels and the Effect of Convection and Diffusion,” J. Am. Chem. Soc., 30, 1742–1754 (1908).

    Article  Google Scholar 

  • Lim, B.G., C.B. Ching, R.B.H. Tan, and S.-C. Ng, “Recovery of (−)-Praziquantel from Racemic Mixtures by Continuous Chromatography and Crystallisation,” Chem. Eng. Sci., 50, 2289–2298 (1995).

    Article  CAS  Google Scholar 

  • Lode, F., M. Houmard, C. Migliorini, M. Mazzotti, and M. Morbidelli, “Continous Reactive Chromatography,” Chemical Engineering Science, 56, 269–291 (2001).

    Article  CAS  Google Scholar 

  • Lorenz, H., P. Sheehan, and A. Seidel-Morgenstern, “Coupling of Simulated Moving Bed Chromatography and Fractional Crystallisation for Efficient Enantioseparation,” J. Chromatography A, 908, 201–214 (2001).

    Article  CAS  Google Scholar 

  • Ludemman-Hombouger, O., R. Nicoud, and M. Bailly, “The “Varicol” Process: a New Multicolumn Continuous Chromatographic Process,” Sep. Sci. Tech., 35(12), 1829–1862 (2000).

    Article  Google Scholar 

  • Ma, Z. and N.-H.L. Wang, “Standing Wave analysis of SMB Chromatography: Linear Systems,” AIChE Journal, 43, 2488–2508 (1997).

    Article  CAS  Google Scholar 

  • Mazzotti, M., G. Storti, and M. Morbidelli, “Optimal Operation of Simulated Moving Bed Units for NonLinear Chromatographic Separations,” J. Chromatography A, 769, 3–24 (1997).

    Article  CAS  Google Scholar 

  • Migliorini, C., M. Mazzotti, and M. Morbidelli, “Design of Simulated Moving Bed Multicomponent Separations: Langmuir Systems,” Sep. and Pur. Tech., 20, 79–96 (2000).

    Article  CAS  Google Scholar 

  • Minceva, M., “Separation/Isomerisation of Xylenes by Simulated Moving Bed Technology,” Ph. D. Thesis, Universidade do Porto, Portugal (2004a).

  • Minceva, M., and A.E. Rodrigues, “Adsorption of Xylenes on Faujasite-type Zeolite: Equilibrium and Kinetics in Batch Adsorber,” Chem. Eng. Research Design, 82, 667–681 (2004b).

    Article  CAS  Google Scholar 

  • Minceva, M. and A.E. Rodrigues, “Influence of the Transfer Line Dead Volume on the Performance of an Industrial Scale Simulated Moving Bed for p-Xylene Separation,” Sep. Sci. Tech., 38(7), 1463–1497 (2003).

    Article  CAS  Google Scholar 

  • Minceva, M. and A.E. Rodrigues, “Modeling and simulation of a Simulated Moving bed for the Separation of p-Xylene,” Industry Engineering Chemical Research, 41, 3454–3461 (2002).

    Article  CAS  Google Scholar 

  • Minceva, M. and A.E. Rodrigues, “Two-Level Optimization of an Existing SMB for p-xylene Separation,” Comput. Chem. Eng., 29, 2215–2228 (2005).

    Article  CAS  Google Scholar 

  • Morari, M. and J. Lee, “Model Predictive Control: Past, Present and Future,” Computer and Chemical Engineering, 23(4–5), 667–682 (1999).

    Article  CAS  Google Scholar 

  • Morbidelli, M. and M. Mazzotti, “Advances in Simulated Moving bed Chromatography,” in “PREP, 15th International Symposium, Exhibit Workshops on Preparative/Process Chromatography Ion Exchange, Adsorption/Desorption Processes & related Separation Techniques,” Lecture 201 Washington DC, USA, (2002) pp. 53–54.

  • Natarajan, S. and J.H. Lee, “Repetitive Model Predictive Control applied to a Simulated moving bed Chromatography Systems,” Computer and Chemical Engineering, 24, 1127–1133 (2000).

    Article  CAS  Google Scholar 

  • Neves, S.B., “Modelling of Adsorption Fixed–Bed in Liquid-Solid Systems,” M.SC. Thesis, Universidade Federal da Bahia, Brazil, 1995.

  • Nicolaos, A., L. Muhr, P. Gotteland, R.M. Nicoud, and M. Bailly, “Application of Equilibrium Theory to Ternary Moving bed Configurations (four+four, five+four, eight and nine zones): I. Linear case,” J. Chromatography A, 908(1–2), 71–86 (2001a).

    Article  CAS  Google Scholar 

  • Nicolaos, A., L. Muhr, P. Gotteland, R.M. Nicoud, and M. Bailly, “Application of the Equilibrium Theory to Ternary Moving bed Configurations (4+4, 5+4, 8 and 9 zones): II. Langmuir case,” J. Chromatography A, 908(1–2), 87–109 (2001b).

    Article  CAS  Google Scholar 

  • Nicoud, R.M., “The Separation of Optical Isomers By Simulated Moving Bed Chromatography,” Pharm. Tech Europe, 11(3), 36 (1999a).

    CAS  Google Scholar 

  • Nicoud, R.M., “The Separation of Optical Isomers by Simulated Moving Bed Chromatography,” Pharm. Tech Europe, 11(4), 28 (1999b).

    CAS  Google Scholar 

  • Pais, L.S. and A.E. Rodrigues, “Design of Simulated Moving Bed and Varicol Processes for Preparative separations with a Low Number of Columns,” J. Chromatogr. A, 1006, 33–44 (2003).

    Article  CAS  Google Scholar 

  • Paredes, G., H.-K. Rhee, and M. Mazzotti, “Design of Simulated-Moving-Bed Chromatography with Enriched Extract Operation (EE-SMB): Langmuir Isotherms,” Ind. Eng. Chem. Res., 45(18), 6289–6301 (2006).

    Article  CAS  Google Scholar 

  • Pavone, D. and G. Hotier, “System Approach Modelling Applied to the Eluxyl Process,” Revue IFP, 55, 437 (2000).

    CAS  Google Scholar 

  • Rhee, H.-K., R. Aris, and N.R. Amundson, “On the Theory of Multicomponent Chromatography,” Phil. Trans. Roy. Soc. London A, 296, 419 (1970).

    Google Scholar 

  • Rodrigues, A.E. and L.S. Pais, “Design of SMB Chiral Separations Units Using Concept of Separation Volume,” Sep. Sci. and Tech., 39, 245–270 (2004).

    Article  CAS  Google Scholar 

  • Sá Gomes P., C.P. Leão, and A.E. Rodrigues, “Simulation of True Moving Bed Adsorptive Reactor: Detailed Particle Model and Linear Driving Force Approximations,” Accepted in Chem. Eng. Sci. (2006).

  • Sá Gomes P., M. Minceva, L.S. Pais, and A.E. Rodrigues, “Advances in SMB chromatographic separations,” Chiral Separation Techniques, in G. Subramanian (Ed.), Wiley–VCH, 2006.

  • Sá Gomes, P. and A.E. Rodrigues, “Outlet Streams Swing (OSS) and MultiFeed (MF) Operation of Simulated Moving Beds,” Accepted in Sep. Sci. and Tech. (2006).

  • Santacesaria, E., M. Morbidelli, P. Danise, M. Mercenari, and S. Carra, “Separation of xylenes on Y zeolite. Part1. Determination of the Adsorption Equilibrium Parameters, Selectivities and Mass Transfer Coefficients Through Finite Batch Experiments,” Ind. and Eng. Chem. Proc. Des. Dev., 21, 440–446 (1982).

    Article  CAS  Google Scholar 

  • Schramm, H., S. Gruner, A. Kienle, and E.D. Gilles, in “ Proceedings of European Control Conference 2001,” pp. 2528–2533, Porto, Portugal, (2001).

  • Schramm, H., M. Kaspereit, A. Kienle, and A. Seidel-Morgenstern, “Improving Simulated Moving Bed Processes by Cyclic modulation of the Feed Concentration,” Chem. Eng. Tech., 25(12), 1151–1155 (2002).

    Article  CAS  Google Scholar 

  • Schramm, H., M. Kaspereit, A. Kienle, and A. Seidel-Morgenstern, “Simulated Moving Bed Process with a Cyclic Modulation of the Feed Concentration,” J. Chromatography A, 1006, 77–86 (2003).

    Article  CAS  Google Scholar 

  • Sherman, J.D., “Ion Exchange Separations With Molecular Sieve Zeolites,” in Zeolites: Science and Technology F. Ribeiro, A Rodrigues, L Rollmann, and C. Naccache (Eds.) pp. 583–622, Martinus Nijhoff Pub., The Hague, 1984.

  • Silva, V.M.T.M. and A.E. Rodrigues, “Novel process for Diethylacetal Synthesis,” AIChE. J, 51, 2752 (2005).

    Article  CAS  Google Scholar 

  • Silva, V.M.T.M. and A.E. Rodrigues, 2004 and 2005. “Processo Industrial de Produção de Acetais num Reactor Adsorptivo de Leito Móvel Simulado,” Patents PT103123 2004, and “Industrial Process For Acetals Production in a Simulated Moving Bed Reactor“ WO/2005/113476.

  • Storti, G., M. Masi, S. Carrá, and M. Morbidelli, “Optimal Design of Multicomponent Counter-current Adsorption Separation Processes Involving NonLinear Equilibria,” Chem. Eng. Sci., 44, 1329–1345 (1989).

    Article  CAS  Google Scholar 

  • Storti, G., M. Mazzotti, M. Morbidelli, and S. Carrá, “Robust Design of Binary Counter-Current Adsorption Separation Processes,” AIChE J., 39, 471–492 (1993).

    Article  CAS  Google Scholar 

  • Strube, J., G. Ströhlein, and M. Shulte, “Symposium on preparative and Industrial Chromatography and Allied Techniques,” Aachen, Germany, 2004.

  • Tondeur, T. and G. Klein, “Constant-Separation-Factor Equilibrium,” Ind. Eng. Chem. Fundamentals, 6(3), 351–361 (1967).

    Article  CAS  Google Scholar 

  • Wang, C., K.U. Klatt, G. Dünnebier, and F. Hanisch, “Neural Network-Based identification of SMB Chromatographic Processes,” Control Eng. Pract., 11(8), 949–970 (2003).

    Article  Google Scholar 

  • Wankat, P.C., “Simulated Moving Bed Cascades for Ternary Separations,” Industry Engineering Chemical Research, 40, 6185–6193 (2001).

    Article  CAS  Google Scholar 

  • Zhang, Z., M. Mazzotti, and M. Morbidelli, “PowerFeed Operation of Simulated Moving bed Units: Changing the Flow-rates During the Switching Interval,” J. Chromatography A, 1006(1–2), 87–99 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alírio E. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sá Gomes, P., Minceva, M. & Rodrigues, A.E. Simulated moving bed technology: old and new. Adsorption 12, 375–392 (2006). https://doi.org/10.1007/s10450-006-0566-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-006-0566-9

Keywords

Navigation