Skip to main content
Log in

Modeling of Adsorption in Finite Cylindrical Pores by Means of Density Functional Theory

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption of argon at its boiling point in finite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, E.P., L.G. Joyner, and P.P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” J. Am. Chem.Soc., 73, 373–380 (1951).

    Article  CAS  Google Scholar 

  • Beck, J.S., J.C. Vartuli, W.J. Roth, M.E Leonowicz, C.T.Kresge, K.D. Schmitt, C. T-W. Chu, D.H. Olson, E.W. Sheppard, S.B.McCullen, J.B. Higgins, and J.L. Schlenker, “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystals Templates,”J. Am. Chem. Soc., 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  • Bhatia, S.K. and C.G. Sonwane, “Capillary Coexistence and Criticality in Mesopores: Modification of the Kelvin Theory,” Langmuir, 14, 1521–1524 (1998).

    CAS  Google Scholar 

  • Branton, P.J., P.G. Hall, and K.S. W. Sing, “Physisorptionof Nitrogen and Oxygen by MCM-41, A Model Mesoporous Adsorbent,” J. Chem. Soc., Chem. Commun., 1257–1258 (1993).

  • Broekhoff, J.C. P. and J.H. de Boer, “Pore Systems in Catalysts. IX. Calculation of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores. 1. Fundamental Equations,” Journal of Catalysis, 9, 8–14 (1967a).

    CAS  Google Scholar 

  • Broekhoff, J.C. P. and J.H. de Boer, “Pore Systems in Catalysts. X. Calculations of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores. 2. Applications,” Journal of Catalysis, 9, 14–27 (1967b).

    Google Scholar 

  • Broekhoff, J.C. P. and J.H. de Boer, “Pore Systems in Catalysts. XII. Pore Distributions From the Desorption Branch of a Nitrogen Sorption Isotherm in the Case of Cylindrical Pores. 1. An Analysis of the Capillary Evaporation Process,” Journal of Catalysis, 10, 368–376 (1968a).

    CAS  Google Scholar 

  • Broekhoff, J.C. P. and J.H. de Boer, “Pore Systems in Catalysts. XIII. Pore Distributions from the Desorption Branch of a Nitrogen Sorption Isotherm in the Case of Cylindrical Pores. 2.Applications,” 10, 377–390 (1968b).

  • Broekhoff, J.C. P. and J.H. de Boer, “Pore Systems in Catalysts. XIV. Calculation of the Cumulative Distribution Functionsfor Slit-Shaped Pores from the Desorption Branch of a Nitrogen Sorption Isotherm,” 10, 391–400 (1968c).

  • Burgess, C. G., D.H. Everett, and H. Douglas, “Lower Closure Point in Adsorption Hysteresis of the Capillary Condensation Type,” J. Colloid Interface Sci., 33, 611–614 (1970).

    Article  CAS  Google Scholar 

  • Carnahan, N.F. and K.E. Starling, “Equation of State for Nonattracting Rigid Spheres,” J. Chem. Phys., 51, 635–636(1969).

    Article  CAS  Google Scholar 

  • Dabadie, T., A. Ayral, C. Guizard, L. Cot, and P. Lacan,“Synthesis and Characterization of Inorganic Gels in a Lyotropic Liquid Crystal Medium. 2. Synthesis of Silica Gels in Lyotropic Crystal Phases Obtained from Cationic Surfactants,” J. Mater. Chem., 6, 1789–1794 (1996).

    Article  CAS  Google Scholar 

  • Evans, R., U.M.B Marconi, and P. Tarazona, “Capillary Condensation and Adsorption in Cylindrical and Slit-Like Pores,” J. Chem. Soc., Faraday Trans. 2, 82, 1763–1787 (1986).

    Google Scholar 

  • Everett, D.H. In The Solid–Gas Interface; Flood,E.A., Ed.; Marcel Dekker: New York, 1967; Vol. 2, Chap. 36, p. 1055.

  • Franke, O., G. Schulz-Ekloff, J. Rathousky, J. Starek, and A. Zukal, “Unusual Type of Adsorption Isotherm Describing Capillary Condensation Without Hysteresis,” J. Chem. Soc., Chem.Commun., 724–726 (1993).

  • Gelb, L.D., “The Ins and Outs of Capillary Condensation in Cylindrical Pores,” Mol. Phys., 100, 2049–2057 (2002).

    Article  CAS  Google Scholar 

  • Given, J.A., “On the Thermodynamic of Fluids Adsorbed in Porous Media,” J. Chem. Phys., 102, 2934–2945 (1995).

    Article  CAS  Google Scholar 

  • Gonzalez, A., J.A. White, F.L. Roman, and S. Velasco,“Density Functional Theory for Small Systems: Hard Spheres in a Closed Spherical Cavity,” Phys. Rev. Lett., 79, 2466–2469 (1997).

    CAS  Google Scholar 

  • Greg, S.J. and K.S. W. Sing, Adsorption, Surface Areaand Porosity; Academic Press: London, 1982.

    Google Scholar 

  • Heffelfinger, G.S., F. van Swol, and K.E. Gubbins,“Adsorption Hysteresis in Narrow Pores,” J. Chem. Phys., 89, 5202–5205 (1988).

    Article  CAS  Google Scholar 

  • Inoue, S., Y. Hanzawa, and K. Kaneko, “Prediction of Hysteresis Disappearance in the Adsorption Isotherm of N2 on Regular Mesoporous Silica,” Langmuir, 14, 3079–3081 (1998).

    Article  CAS  Google Scholar 

  • Jaroniec, M., M. Kruk, and J.P. Olivier, “Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas,”Langmuir, 15, 5410–5413 (1999).

    Article  CAS  Google Scholar 

  • Kadlec, O. and M.M. Dubinin, “Limits of Applicability ofthe Mechanism of Capillary Condensation,” J. Colloid Interface Sci., 31, 479–489 (1969).

    Article  CAS  Google Scholar 

  • Kierlik, E. and M.L. Rosinberg, “Density Functional Theoryfor Inhomogeneous Fluids: Adsorption of Binary Mixtures,” Phys.Rev. A, 44, 5025–5037 (1991).

    Article  CAS  Google Scholar 

  • Kresge, C.T., M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, 359b 710–712 (1992).

    Google Scholar 

  • Kruk, M., M. Jaroniec, and A. Sayari, “Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes,” J. Phys. Chem. B., 101, 583–589 (1997a).

    Article  CAS  Google Scholar 

  • Kruk, M., M. Jaroniec, and A. Sayari, “Structural and Surface Properties of Siliceous and Titanium-Modified HMS Molecular Sieves,” J. Microporous Mater., 9, 173–183 (1997b).

    CAS  Google Scholar 

  • Kruk, M., M. Jaroniec, and A. Sayari, “Application of Large Pore MCM-41 Molecular Sieves to Improve Pore Size Analysis Using Nitrogen Adsorption Measurements,” Langmuir, 13, 6267–6273 (1997c).

    CAS  Google Scholar 

  • Kruk, M., M. Jaroniec, and A. Sayari, “Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring,” Adsorption, 6, 47–51 (2000).

    Article  CAS  Google Scholar 

  • Kruk, M. and M. Jaroniec, “Accurate Method for Calculating Mesopore Size Distributions From Argon Adsorption Data at 87 KDeveloped Using Model MCM-41 Materials,” Chem. Mater., 12, 222–230 (2000).

    CAS  Google Scholar 

  • Kruk, M. and M. Jaroniec, “Gas Adsorption Characterizationof Ordered Organic—Inorganic Nanocomposite Materials,” Chem.Mater., 13, 3169–3183 (2001).

    Article  CAS  Google Scholar 

  • Kruk, M. and M. Jaroniec, “Determination of Mesopore Size Distributions From Argon Adsorption Data at 77 K,” J. Phys. Chem.B, 106, 4732–4739 (2002).

    CAS  Google Scholar 

  • Lastoskie, C., K.E Gubbins,. and N. Quirke, “Pore Size Distribution Analysis of Microporous Carbons: A Density Functional Theory Approach,” J. Phys. Chem., 97, 4786–4796 (1993).

    Article  CAS  Google Scholar 

  • Madden, W.G., “Fluid Distributions in Random Media:Arbitrary Matrices,” J. Chem. Phys., 96, 5422–5432 (1992).

    Article  CAS  Google Scholar 

  • Maddox, M.W., J.P. Olivier, and K.E. Gubbins,“Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects,” Langmuir, 13, 1737–1745 (1997).

    Article  CAS  Google Scholar 

  • Morishige, K. and M. Ito, “Capillary Condensation of Nitrogen in MCM-41 and SBA-15,” J. Chem. Phys., 117, 8036–8041 (2002).

    Article  CAS  Google Scholar 

  • Morishige, K. and Y. Nakamura, “Nature of Adsorption and Desorption Branches in Cylindrical Pores,” Langmuir, 20, 4503–4506 (2004).

    Article  CAS  Google Scholar 

  • Neimark, A.V., P.I. Ravikovitch, M. Grün, F.Schüth, and K.K. Unger, “Pore Size Analysis of MCM-41 Type Adsorbents By Means of Nitrogen and Argon Adsorption,” J. Colloid Interface Science, 207, 159–169 (1998).

    CAS  Google Scholar 

  • Neimark, A.V., P.I. Ravikovitch, and A. Vishnyakov,“Adsorption Hysteresis in Nanopores,” Phys. Rev. E, 62, 1493–1496 (2000).

    Article  Google Scholar 

  • Neimark, A.V. and P.I. Ravikovitch, “Capillary Condensation in MMS and Pore Structure Characterization,” Microporous and Mesoporous Materials, 44–45, 697–707 (2001).

    Google Scholar 

  • Papadopoulou, A., F. van Swol, and U. Marini Bettolo Marconi, “Pore-End Effects on Adsorption Hysteresis in Cylindrical and Slitlike Pores,” J. Chem. Phys., 97, 6942–6952 (1992).

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., D. Wei, W.T. Chueh, G.L. Haller, and A.V. Neimark, “Evaluation of Pore Structure Parameters of MCM-41Catalyst Support and Catalysts by Means of Nitrogen and Argon Adsorption,” J. Phys. Chem. B., 101, 3671–3679 (1997).

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I. and A.V. Neimark, “Calculations of Pore Size Distributions in Nanoporous Materials from Adsorption and Desorption Isotherms,” Studies in Surf. Sci. & Catal., 129, 597–606 (2000).

    CAS  Google Scholar 

  • Ravikovitch, P.I., A. Vishnyakov, and A.V. Neimark,“Density Functional Theories and Molecular Simulations of Adsorptionand Phase Transitions in Nanopores,” Phys. Rev. E, 64, 011602/1–011602/20 (2001).

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I. and A.V. Neimark, “Characterization of Nanoporous Materials From Adsorption and Desorption Isotherms,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 187–188, 11–21 (2001).

    Google Scholar 

  • Rosenfeld, Y., “Free Energy Model for the Inhomogeneous Hard Sphere Fluid Mixture and Density Functional Theory of Freezing,”Phys. Rev. Lett., 63, 980–983 (1989).

    Article  CAS  Google Scholar 

  • Schmidt, M., “Density-Functional Theory for Fluids in Porous Media,” Phys. Rev. E, 66, 041108/1–041108/7 (2002).

    Article  CAS  Google Scholar 

  • Selvam, P., S.K. Bhatia, and Ch. G. Sonwane, “Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves,” Ind. Eng. Chem. Res., 40, 3237–3261 (2001).

    Article  CAS  Google Scholar 

  • Sonwane, C.G. and S.K. Bhatia, “Adsorption in Mesopores: AMolecular-Continuum Model with Application to MCM–41,” Chem.Eng. Sci., 53, 3143–3156 (1998).

    CAS  Google Scholar 

  • Sonwane, C.G., S.K. Bhatia, and N. Calos, “Experimentaland Theoretical Investigations of Adsorption Hysteresis and Criticalityin MCM-41: Studies with O2, Ar, and CO2,” Ind. Eng.Chem. Res., 37, 2271–2283 (1998).

    Article  CAS  Google Scholar 

  • Tarazona, P., “Free-Energy Density Functional for Hard Spheres,” Phys. Rev. A., 31, 2672–2679 (1985).

    Article  CAS  Google Scholar 

  • Tarazona, P., U.M.B. Marconi, and R. Evans, “Phase Equilibria of Fluid Interfaces and Confined Fluids. Nonlocal Versus Local Density Functionals,” Mol. Phys., 60, 573–595(1987).

    CAS  Google Scholar 

  • Thommes, M., R. Köhn, and M. Fröba, “Sorption and Pore Condensation Behavior of Pure Fluids in Mesoporous MCM-48 Silica,MCM-41 silica, SBA-15 Silica and Controlled-Pore Glass at Temperatures Above and Below the Bulk Triple Point,” Appl. Surf. Sci., 196, 239–249 (2002).

    Article  CAS  Google Scholar 

  • Ustinov, E.A. and D.D. Do, “Application of Density Functional Theory to Capillary Phenomena in Cylindrical Mesopores with Radial and Longitudinal Density Distributions,” J. Chem. Phys., 120, 9769–9781 (2004a).

    Article  CAS  Google Scholar 

  • Ustinov, E.A. and D.D. Do, “Capillary Phenomena in the Framework of the Two-Dimensional Density Functional Theory.” Fundamentals of Adsorption 8. Sedona, Arizona, USA. May 23–28 2004b.

  • Ustinov, E.A., D.D. Do, and M. Jaroniec, “Application of Density Functional Theory to Equilibrium Adsorption of Argon and Nitrogen on Amorphous Silica Surface,” Appl. Surf. Sci., 252, 548–561 (2005a).

    CAS  Google Scholar 

  • Ustinov, E.A., D.D. Do, and M. Jaroniec, “Adsorption of Argon and Nitrogen in Cylindrical Pores of MCM-41 Materials.Application of Density Functional Theory,” Appl. Surf. Sci., 252, 1013–1028 (2005b).

    CAS  Google Scholar 

  • Ustinov, E.A., D.D. Do, and M. Jaroniec, “Equilibrium Adsorption in Cylindrical Mesopores: A Modified Broekhoff and de Boer Theory Versus Density Functional Theory,” J. Phys. Chem. B, 109, 11653–11660(2005c).

    CAS  Google Scholar 

  • Vishnyakov, A. and A.V. Neimark, “Nucleation of Liquid Bridges and Bubbles in Nanoscale Capillaries,” J. Chem. Phys., 119, 9755–9764 (2003).

    Article  CAS  Google Scholar 

  • White, J.A. and A. Gonzalez, “The Extended Variable Space Approach to Density Functional Theory in the Canonical Ensemble,” J. Phys. Condens. Mater., 14, 11907–11919 (2002).

    CAS  Google Scholar 

  • Weeks, J.D., D. Chandler, and H.C. Andersen, “Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids,” J. Chem. Phys., 54, 5237–5247 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, E.A., Do, D.D. Modeling of Adsorption in Finite Cylindrical Pores by Means of Density Functional Theory. Adsorption 11, 455–477 (2005). https://doi.org/10.1007/s10450-005-5606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-005-5606-3

Keywords

Navigation