Skip to main content
Log in

Integral equation methods for the Yukawa-Beltrami equation on the sphere

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

An integral equation method for solving the Yukawa-Beltrami equation on a multiply-connected sub-manifold of the unit sphere is presented. A fundamental solution for the Yukawa-Beltrami operator is constructed. This fundamental solution can be represented by conical functions. Using a suitable representation formula, a Fredholm equation of the second kind with a compact integral operator needs to be solved. The discretization of this integral equation leads to a linear system whose condition number is bounded independent of the size of the system. Several numerical examples exploring the properties of this integral equation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, B.K.: Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551–1584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001). doi:10.1006/jcph.2001.6937. http://www. sciencedirect.com/science/article/pii/S0021999101969372

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonner, B, Graham, I, Smyshlyaev, V: The computation of conical diffraction coefficients in high-frequency acoustic wave scattering. SIAM J. Numer. Anal. 43(3), 1202–1230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaplain, M., Ganesh, M., Graham, I.: Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth. J. Math. Biology 42, 387–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, vol. 93 Springer Science & Business Media (2012)

  7. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A. , Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for geometric modelling, mathematics and visualization, pp 157–186. Springer, Berlin (2005), doi:10.1007/3-540-26808-1_9

  8. Gatica, G.N., Hsiao, G.C., Sayas, F.J.: Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120(3), 465–487 (2012). doi:10.1007/s00211-011-0414-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Gemmrich, S., Nigam, N., Steinbach, O.: Boundary integral equations for the Laplace-Beltrami Operator. Mathematics and Computation, a Contemporary View 3, 21–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kropinski, M., Quaife, B.: Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 230, 425–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kropinski, M.C.A., Nigam, N.: Fast integral equation methods of the Laplace-Beltrami equation on the sphere. Adv. Comput. Math. 40, 577–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kropinski, M.C.A., Quaife, B.: Fast integral equation methods for rothe’s method applied to the isotropic heat equation. Comput. Math. Appl 61(9), 2436–2446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lebedev, N.N.: Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication

  14. Lindblom, L., Szilágyi, B.: Solving partial differential equations numerically on manifolds with arbitrary spatial topologies. J. Comput. Phys. 243, 151–175 (2013)

    Article  MathSciNet  Google Scholar 

  15. Mitrea, M., Taylor, M.: Boundary layer methods for lipschitz domains in riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Myers, T., Charpin, J.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Transf. 47(25), 5483–5500 (2004). doi:10.1016/j.ijheatmasstransfer.2004.06.037. http://www.sciencedirect.com/science/article/pii/S0017931004002807

    Article  MATH  Google Scholar 

  17. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC (2010). With 1 CD-ROM (Windows, Macintosh and UNIX)

  18. Quaife, B.: Fast integral equation methods for the modified helmholtz equation. Simon Fraser University, Ph.D. thesis (2011)

    MATH  Google Scholar 

  19. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008). doi:10.1016/j.jcp.2007.10.009. http://www.sciencedirect.com/science/ article/pii/S002199910700441X

    Article  MathSciNet  MATH  Google Scholar 

  20. Witkin, A., Kass, M.: Reaction-diffusion textures. SIGGRAPH Comput. Graph. 25(4), 299–308 (1991). doi:10.1145/127719.122750

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Quaife.

Additional information

Communicated by: Alexander Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropinski, M.C., Nigam, N. & Quaife, B. Integral equation methods for the Yukawa-Beltrami equation on the sphere. Adv Comput Math 42, 469–488 (2016). https://doi.org/10.1007/s10444-015-9431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9431-2

Keywords

Mathematics Subject Classification (2010)

Navigation