Skip to main content
Log in

Reduced order model in cardiac electrophysiology with approximated Lax pairs

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A reduced-order method based on Approximated Lax Pairs (ALP) is applied to the integration of electrophysiology models. These are often high-dimensional parametric equation systems, challenging from a model reduction standpoint. The method is tested on two and three dimensional test-cases, of increasing complexity. The solutions are compared to the ones obtained by a finite element. The reduced-order simulation of pseudo-electrocardiograms based on ALP is proposed in the last part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  2. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolationmethod: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010)

    Article  Google Scholar 

  4. Boulakia, M., Schenone, E., Gerbeau, J.-F.: Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. International Journal for Numerical Methods in Biomedical Engineering 28, 727–744 (2012). RR-7811 RR-7811

    Article  MathSciNet  Google Scholar 

  5. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, M., Hou, T.Y., Zhang, Z.: A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations i: Derivation and algorithms. J. Comput. Phys. 242, 843–868 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, M., Hou, T.Y., Zhang, Z.: A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations ii: Adaptivity and generalizations. J. Comput. Phys. 242, 753–776 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colli-Franzone, P., Pavarino, L.F., Scacchi, S.: Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3d anisotropic bidomain model. Math. Biosci. 230(2), 96–114 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosci. 197(1), 35–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–465 (1961)

    Article  Google Scholar 

  12. Gerbeau, Jean-Frédéric, Damiano Lombardi: Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations. Research Report RR-8454, INRIA, January 2014

  13. Holmes, P., Lumley, J.L., Berkooz, G., 1st edn: Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press (1996)

  14. Koch, O., Lubich, C.: Dynamical low rank approximation. SIAM Journal on Matrix Analysis and Applications 29, 435–454 (2007)

    Article  MathSciNet  Google Scholar 

  15. Kunisch, K., Volkwein, S., Xie, L.: Hjb-pod-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pur. Appl. Math. 21, 467–490 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nagumo, J.S., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  18. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2005)

    Article  MathSciNet  Google Scholar 

  19. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering 15(3), 1–47 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ryckelynck, D., Vincent, F., Cantournet, S.: Multidimensional a priori hyper-reduction of mechanical models involving internal variables. Comput. Methods Appl. Mech. Eng. 225, 28–43 (2012)

    Article  MathSciNet  Google Scholar 

  21. Sachse, F.B: Computational Cardiology: Modeling of Anatomy, Electrophysiology and Mechanics. Springer (2004)

  22. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238, 2347–2360 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sirovich, L.: Low dimensional description of complicated phenomena. Contemp. Math. 99, 277–305 (1989)

    Article  MathSciNet  Google Scholar 

  24. Streeter, D.D.: Gross morphology and fiber geometry of the heart. Handbook Physiology, The cardiovascular system 1, 61–112 (1979)

    Google Scholar 

  25. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart, volume 1 of Monographs in Computational Science and Engineering. Springer (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Schenone.

Additional information

Communicated by: Editors of Special Issue on MoRePas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerbeau, JF., Lombardi, D. & Schenone, E. Reduced order model in cardiac electrophysiology with approximated Lax pairs. Adv Comput Math 41, 1103–1130 (2015). https://doi.org/10.1007/s10444-014-9393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9393-9

Keywords

Mathematics Subject Classifications (2010)

Navigation