Skip to main content
Log in

Pseudo transient continuation and time marching methods for Monge-Ampère type equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present two numerical methods for the fully nonlinear elliptic Monge-Ampère equation. The first is a pseudo transient continuation method and the second is a pure pseudo time marching method. The methods are proven to converge to a strictly convex solution of a natural discrete variational formulation with C 1 conforming approximations. The assumption of existence of a strictly convex solution to the discrete problem is proven for smooth solutions of the continuous problem and supported by numerical evidence for non smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awanou, G.: Energy methods in 3D spline approximations of the Navier-Stokes equations. Ph.D. Dissertation, University of Georgia. Athens, Ga (2003)

    Google Scholar 

  2. Awanou, G.: Robustness of a spline element method with constraints. J. Sci. Comput. 36(3), 421–432 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge-Ampère equation: classical solutions. To appear in IMA J. of Num. Analysis (2014)

  4. Awanou, G., Lai, M.J.: Trivariate spline approximations of 3D Navier-Stokes equations. Math. Comp. 74(250), 585–601 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Awanou, G., Lai, M.J., Wenston, P.: The multivariate spline method for scattered data fitting and numerical solution of partial differential equations. In: Wavelets and splines: Athens 2005, Mod. Methods Math., pp. 24–74. Nashboro Press, Brentwood (2006)

    Google Scholar 

  6. Awanou, G.M., Lai, M.J.: On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems. Appl. Numer. Math. 54(2), 122–134 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baramidze, V., Lai, M.J.: Spherical spline solution to a PDE on the sphere. In: Wavelets and splines: Athens 2005, Mod. Methods Math., pp. 75–92. Nashboro Press, Brentwood (2006)

    Google Scholar 

  8. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bohmer, K.: Numerical methods for nonlinear elliptic differential equations: a synopsis. Oxford University Press, USA (2010)

    Book  Google Scholar 

  11. Braess, D.: Finite elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker

  12. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y.: C 0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp. 80(276), 1979–1995 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge-Ampère equation. ESAIM Math. Model. Numer. Anal. 46(5), 979–1001 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, 2nd edn. Springer-Verlag, New York (2002)

    Book  Google Scholar 

  15. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Engrg. 195(13-16), 1344–1386 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dyer, B.W., Hong, D.: Algorithm for optimal triangulations in scattered data representation and implementation. J. Comput. Anal. Appl. 5(1), 25–43 (2003). Approximation theory and wavelets (Austin, TX, 1999)

    MATH  MathSciNet  Google Scholar 

  17. Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

  18. Faragó, I., Karátson, J.: Numerical solution of nonlinear elliptic problems via preconditioning operators: theory and applications, Advances in Computation: Theory and Practice, vol. 11 (2002)

  19. Feng, X., Glowinski, R., Neilan, M.: Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations. SIAM Rev. 55(2), 205–267 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Feng, X., Neilan, M.: Convergence of a fourth order singular perturbation of the n-dimensional radially symmetric Monge-Ampere equation. To appear in Applicable Analysis

  21. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Glowinski, R.: Numerical methods for fully nonlinear elliptic equations. In: ICIAM 07—6th International Congress on Industrial and Applied Mathematics, pp. 155–192. Eur. Math. Soc. Zürich (2009)

  24. Hoffman, A.J., Wielandt, H.W.: The variation of the spectrum of a normal matrix. Duke Math. J. 20, 37–39 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hu, X.L., Han, D.F., Lai, M.J.: Bivariate splines of various degrees for numerical solution of partial differential equations. SIAM J. Sci. Comput. 29 (3), 1338–1354 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kelley, C.T., Keyes, D.E.: Convergence analysis of pseudo-transient continuation. SIAM J. Numer. Anal. 35(2), 508–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lai, M.J.: Convex preserving scattered data interpolation using bivariate C 1 cubic splines. J. Comput. Appl. Math. 119(1-2), 249–258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lai, M.J., Schumaker, L.L.: Spline functions on triangulations, Encyclopedia of Mathematics and its Applications, vol. 110 (2007)

  29. Loeper, G., Rapetti, F.: Numerical solution of the Monge-Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340(4), 319–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation ( 2 z/ x 2)( 2 z/ y 2)−(( 2 z/ x y))2=f and its discretizations. I. Numer. Math. 54(3), 271–293 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Awanou.

Additional information

Communicated by: Ian H. Sloan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awanou, G. Pseudo transient continuation and time marching methods for Monge-Ampère type equations. Adv Comput Math 41, 907–935 (2015). https://doi.org/10.1007/s10444-014-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9391-y

Keywords

Mathematics Subject Classification (2010)

Navigation