Skip to main content
Log in

A posteriori error estimates for an optimal control problem of laser surface hardening of steel

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The main focus of this article is on the development of a posteriori error estimates for an optimal control problem of laser surface hardening of steel, governed by a dynamical system consisting of a semi-linear parabolic equation and an ordinary differential equation. A posteriori error estimators are developed for the variables representing temperature, formation of austenite, and laser energy using residual method when a continuous piecewise linear discretization has been used for the finite element approximation of space variables and a discontinuous Galerkin method has been used for time and control discretizations. The error indicators are used in the implementation and numerical results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arada, N., Casas, E., Troltzsch, F.: Error estimates for numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnăutu, V., Hömberg, D., Sokołowski, J.: C onvergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim. 20, 805–824 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: A posteriori error estimates for finite element methods. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  4. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44, 283–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II–a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bangerth, W., Herold, O.K.: Data structures and requirements for hp finite element software. ACM Trans. Math. Softw. 36(1), 1–31 (2006)

    Article  Google Scholar 

  7. Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. In: Lectures in Mathematics. ETH Zurich, Birkhäuser Verlag, Basel (2003)

    Google Scholar 

  8. Becker, R., Kapp, H.: Optimization in PDE models with adaptive finite element discretization. Report 98-20(SFB 359). University of Heidelberg, Heidelberg (1998)

  9. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Anal. 4, 237–264 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Becker, R., Rannacher, R.: An optimal control approach to error estimation and mesh adaptation in finite element methods. In: Iserles, A. (ed.) Acta Numerica 2000, pp. 1–102. Cambridge University Press (2001)

  12. Casas, E., Herzog, R., Wachsmuth, G.: Analysis of an elliptic control problem with non-differentiable cost functional. Technical report, Chemnitz University of Technology (2010)

  13. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32, 706–740 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. AMS (1998)

  16. Leblond, J.B., Devaux, J.: A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32, 137–146 (1984)

    Article  Google Scholar 

  17. Gupta, N., Nataraj, N., Pani, A.K.: An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model. 7, 667–680 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Gupta, N.: Finite element methods for the optimal control problem of laser surface hardening of steel. Ph.D. thesis, Department of Mathematics, Indian Institute of Technology Bombay (2009)

  19. Gupta, N., Nataraj, N.: An hp-discontinuous Galerkin method for the optimal control problem of laser surface hardening of steel. M 2 AN 45, 1081–1113 (2011)

    Google Scholar 

  20. Hömberg, D., Sokolowski, J.: Optimal control of laser hardening. Adv. Math. Sci. 8, 911–928 (1998)

    MATH  Google Scholar 

  21. Hömberg, D., Fuhrmann, J., Numerical simulation of surface hardening of steel. Inter. J. Numer. Methods in Heat Fluid Flow 9, 705–724 (1999)

    Article  MATH  Google Scholar 

  22. Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 37, 1003–1028 (2003)

    Article  Google Scholar 

  23. Houston, P., Süli, E.: A posteriori error analysis for linear convection-diffusion problems under weak mesh regularity assumptions. Report 97/03, Oxford University Computing Laboratory, Oxford (1997)

  24. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, R., Liu, W.B., Ma, H.P., Tang, T.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42, 1032–1061 (2004)

    Article  MathSciNet  Google Scholar 

  26. Liu, W.B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15, 285–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W.B., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 100–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W.B., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazhukin, V.I., Samarskii, A.A.: Mathematical modelling in the technology of laser treatments of materials. Surv. Math. Ind. 4, 85–149 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Meidner, D.: Adaptive finite element methods for optimization problems goverened by non-linear parabolic systems. Ph.D. Dissertation, University of Heidelberg (2008)

  31. Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rannacher, R.: Adaptive Finite Element Methods for PDE-constrained Optimal Control Problems. Reactive Flows, Diffusion and Transport. Abschlussband SFB 359, Universitt Heidelberg, Springer, Heidelberg (2005)

  33. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

  34. Volkwein, S.: Non-linear conjugate method for the optimal control of laser surface hardening. Optim. Methods Softw. 19, 179–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neela Nataraj.

Additional information

Communicated by Aihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Nataraj, N. A posteriori error estimates for an optimal control problem of laser surface hardening of steel. Adv Comput Math 39, 69–99 (2013). https://doi.org/10.1007/s10444-011-9270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9270-8

Keywords

Mathematics Subject Classifications (2010)

Navigation