Skip to main content
Log in

Construction of optimally conditioned cubic spline wavelets on the interval

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper is concerned with a construction of new spline-wavelet bases on the interval. The resulting bases generate multiresolution analyses on the unit interval with the desired number of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have compact support. Inner wavelets are translated and dilated versions of well-known wavelets designed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet bases with the condition number which is close to the condition number of the spline wavelet bases on the real line, especially in the case of the cubic spline wavelets. We show that the constructed set of functions is indeed a Riesz basis for the space L 2 ([0, 1]) and for the Sobolev space H s ([0, 1]) for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary conditions of the first order and the dual bases to the complementary boundary conditions. Quantitative properties of the constructed bases are presented. Finally, we compare the efficiency of an adaptive wavelet scheme for several spline-wavelet bases and we show a superiority of our construction. Numerical examples are presented for the one-dimensional and two-dimensional Poisson equations where the solution has steep gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Hall, N., Jawerth, B., Peters, G.: Wavelets on the closed subsets of the real line. In: Schumaker, L.L., Webb, G. (eds.) Topics in the Theory and Applications of Wavelets, pp. 1–64. Academic, Boston (1994)

    Google Scholar 

  2. Barsch, T.: Adaptive Multiskalenverfahren für Elliptische Partielle Differentialgleichungen—Realisierung, Umsetzung und Numerische Ergebnisse. Ph.D. thesis, RWTH Aachen (2001)

  3. Bittner, K.: A New View on Biorthogonal Spline Wavelets. Universität Ulm, Ulm (2005)

    Google Scholar 

  4. Bittner, K.: Biorthogonal spline wavelets on the interval. In: Wavelets and Splines, Athens, (2005) Mod. Methods Math., pp. 93–104. Nashboro, Brentwood (2006)

  5. Burstedde, C.: Fast optimized wavelet methods for control problems constrained by elliptic PDEs. Ph.D. thesis, Universität, Bonn (2005)

  6. Carnicer, J.M., Dahmen, W., Peňa, J.M.: Local decomposition of refinable spaces. Appl. Comput. Harmon. Anal. 6, 1–52 (1999)

    Article  MathSciNet  Google Scholar 

  7. Canuto, C., Tabacco, A., Urban, K.: The wavelet element method, part I: construction and analysis. Appl. Comput. Harmon. Anal. 6, 1–52 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chui, C.K., Quak, E.: Wavelets on a bounded interval. In: Braess, D., Schumaker, L.L. (eds.) Numerical Methods of Approximation Theory, pp. 53–75. Birkhäuser, Basel (1992)

    Google Scholar 

  9. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1, 54–81 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Černá, D.: Biorthogonal wavelets. Ph.D. thesis, Charles University, Prague (2008)

  12. Dahlke, S., Fornasier, M., Primbs, M., Raasch, T., Werner, M.: Nonlinear and Adaptive Frame Approximation Schemes for Elliptic PDEs: Theory and Numerical Experiments. Philipps-Universität Marburg, Marburg (2007)

    Google Scholar 

  13. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341–362 (1996)

    MathSciNet  Google Scholar 

  14. Dahmen, W.: Multiscale analysis, approximation, and interpolation spaces. In: Chui, C.K., Schumaker, L.L (eds.) Approximation Theory VIII, pp. 47–88. World Scientific, Singapore (1995)

    Google Scholar 

  15. Dahmen, W., Han, B., Jia R.Q., Kunoth A.: Biorthogonal multiwavelets on the interval: cubic hermite splines. Constr. Approx. 16(2), 221–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6, 132–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dahmen, W., Kunoth, A., Urban, K.: Wavelets in numerical analysis and their quantitative properties. In: Le Méhauté, A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods, vol. 2, pp. 93–130. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  18. Dahmen, W., Miccheli, C.A.: Banded matrices with banded inverses, II: locally finite decomposition of spline spaces. Constr. Approx. 9, 263–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jia, R.Q.: Stable bases of spline wavelets on the interval. In: Wavelets and Splines, Athens 2005, Mod. Methods Math., pp. 120–135. Nashboro, Brentwood (2006)

  20. Jia, R.Q.: Spline wavelets on the interval with homogeneous boundary conditions. Adv. Comput. Math. 30(2), 177–200 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jia, R.Q., Jiang, Q.T.: Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24(4), 1071–1109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jia, R.Q., Liu, S.T.: Wavelet bases of hermite cubic splines on the interval. Adv. Comput. Math. 25(1–3), 23–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Primbs, M.: Stabile biorthogonale Spline-Waveletbasen auf dem Intervall. Dissertation, Universität Duisburg-Essen (2006)

  24. Primbs, M.: New Stable Biorthogonal Spline Wavelets on the Interval. Universität Duisburg-Essen, Essen (2007)

    Google Scholar 

  25. Primbs, M.: Technical Report for the Paper: ’New Stable Biorthogonal Spline Wavelets on the Interval’. Universität Duisburg-Essen, Duisburg (2007)

  26. Schneider, A.: Biorthogonal Cubic Hermite Spline Multiwavelets on the Interval with Complementary Boundary Conditions. Philipps-Universität Marburg, Marburg (2007)

    Google Scholar 

  27. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  28. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41, 1074–1100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grivet Talocia, S., Tabacco, A.: Wavelets on the interval with optimal localization. Math. Models Methods Appl. Sci. 10, 441–462 (2000)

    MATH  MathSciNet  Google Scholar 

  30. Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  31. Weyrich, N.: Spline wavelets on an interval. In: Jain, P. K. et al. (eds.) Wavelets and Allied Topics, pp. 117–189. New Narosa, Delhi (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Černá.

Additional information

Communicated by Rong-Qing Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Černá, D., Finěk, V. Construction of optimally conditioned cubic spline wavelets on the interval. Adv Comput Math 34, 219–252 (2011). https://doi.org/10.1007/s10444-010-9152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9152-5

Keywords

Mathematics Subject Classifications (2010)

Navigation