Skip to main content
Log in

Nonstandard Gaussian quadrature formulae based on operator values

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop the theory of so-called nonstandard Gaussian quadrature formulae based on operator values for a general family of linear operators, acting of the space of algebraic polynomials, such that the degrees of polynomials are preserved. Also, we propose a stable numerical algorithm for constructing such quadrature formulae. In particular, for some special classes of linear operators we obtain interesting explicit results connected with theory of orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, V.F.: On a certain problem of optimal integration. In: Studies on Contemporary Problems of Integration and Approximation of Functions and their Applications, Collection of Research Papers (Russian), pp. 3–13. Dnepropetrovsk State University, Dnepropetrovsk (1984)

    Google Scholar 

  2. Barrow, D.L.: On multiple node Gaussian quadrature formulae. Math. Comp. 32, 431–439 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckermann, B.: Complex Jacobi matrices. J. Comput. Appl. Math. 127, 17–65 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, Princeton (1949)

    MATH  Google Scholar 

  5. Bojanov, B.: Gaussian quadrature formulae for Tchebycheff systems. East J. Approx. 3, 71–88 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Bojanov, B.D., Braess, D., Dyn, N.: Generalized Gaussian quadrature formulas. J. Approx. Theory 48, 335–353 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bojanov, B., Petrov, P.: Gaussian interval quadrature formula. Numer. Math. 87, 625–643 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bojanov, B., Petrov, P.: Uniqueness of the Gaussian interval quadrature formula. Numer. Math. 95, 53–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bojanov, B., Petrov, P.: Gaussian interval quadrature formula for Tchebycheff systems. SIAM J. Numer. Anal. 43, 787–795 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chakalov, L.: Über eine allgemeine quadraturformel. C.R. Acad. Bulgare Sci. 1, 9–12 (1948)

    Google Scholar 

  11. Chakalov, L.: General quadrature formulae of Gaussian type (Bulgarian). Bulgar. Akad. Nauk Izv. Mat. Inst. 1, 67–84 (1954) [English transl.: East J. Approx. 1, 261–276 (1995)]

    MathSciNet  Google Scholar 

  12. Chakalov, L.: Formules générales de quadrature mécanique du type de Gauss. Colloq. Math. 5, 69–73 (1957)

    MathSciNet  Google Scholar 

  13. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  14. Dahlquist, G.: On summation formulas due to Plana, Lindelöf and Abel, and related GaussChristoffel rules, I. BIT 37, 256–295 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahlquist, G.: On summation formulas due to Plana, Lindelöf and Abel, and related GaussChristoffel rules, II. BIT 37, 804–832 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahlquist, G.: On summation formulas due to Plana, Lindelöf and Abel, and related GaussChristoffel Rules, III. BIT 39, 51–78 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Commentationes Societatis Regiae Scientarium Göttingensis Recentiores 3 (1814) [Werke III, pp. 163–196]

  18. Gautschi, W.: Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 10, 21–62 (1994)

    Article  Google Scholar 

  19. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  20. Ghizzetti, A., Ossicini, A.: Quadrature Formulae. Akademie, Berlin (1970)

    MATH  Google Scholar 

  21. Ghizzetti, A., Ossicini, A.: Sull’ esistenza e unicità delle formule di quadratura gaussiane. Rend. Mat. 8(6), 1–15 (1975)

    MATH  MathSciNet  Google Scholar 

  22. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rule. Math. Comp. 23, 221–230 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karlin, S., Pinkus, A.: Gaussian quadrature formulae with multiple nodes. In: Karlin, S., Micchelli, C.A., Pinkus, A., Schoenberg, I.J. (eds.) Studies in Spline Functions and Approximation Theory, pp. 113–141. Academic, New York (1976)

    Google Scholar 

  24. Koekoek, R., Swarttouw, R.P.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98–17, TU Delft (1998)

  25. Kuzmina, A.L.: Interval quadrature formulae with multiple node intervals. Izv. Vuzov 7(218), 39–44 (1980) (Russian)

    MathSciNet  Google Scholar 

  26. Lax, P.D.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  27. Mastroianni, G., Milovanović, G.V.: Interpolation Proccesses: Basic Theory and Applications. Springer Monographs in Mathematics, Springer, Berlin (2008)

    MATH  Google Scholar 

  28. Milovanović, G.V.: Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Milovanović, G.V., Cvetković, A.S.: Uniqueness and computation of Gaussian interval quadrature formula for Jacobi weight function. Numer. Math. 99, 141–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Milovanović, G.V., Cvetković, A.S.: Gauss-Laguerre interval quadrature rule. J. Comput. Appl. Math. 182(2005), 433–446

    Google Scholar 

  31. Milovanović, G.V., Cvetković, A.S.: Some inequalities for symmetric functions and an application to orthogonal polynomials. J. Math. Anal. Appl. 311, 191–208 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Milovanović, G.V., Cvetković, A.S.: Gaussian type quadrature rules for Müntz systems. SIAM J. Sci. Comput. 27, 893–913 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Milovanović, G.V., Cvetković, A.S.: Gauss-Radau and Gauss-Lobatto interval quadrature rules for Jacobi weight function. Numer. Math. 102, 523–542 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Milovanović, G.V., Cvetković, A.S.: Gauss-Hermite interval quadrature rule. Comput. Math. Appl. 54, 544–555 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Milovanović, G.V., Mitrinović, D.S., Rassias, T.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  36. Milovanović, G.V., Rajković, P.M., Marjanović, Z.M.: On properties of some nonclassical orthogonal polynomials. Filomat 9, 101–111 (1995)

    MATH  Google Scholar 

  37. Milovanović, G.V., Spalević, M.M., Cvetković, A.S.: Calculation of Gaussian type quadratures with multiple nodes. Math. Comput. Model. 39, 325–347 (2004)

    Article  MATH  Google Scholar 

  38. Motornyi, V.P.: On the best quadrature formulae in the class of functions with bounded r-th derivative. East J. Approx. 4, 459–478 (1998)

    MATH  MathSciNet  Google Scholar 

  39. Omladič, M.: Average quadrature formulas of Gauss type. IMA J. Numer. Anal. 12, 189–199 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Omladič, M., Pahor, S., Suhadolc, A.: On a new type quadrature formulas. Numer. Math. 25, 421–426 (1976)

    Article  MATH  Google Scholar 

  41. Pitnauer, Fr., Reimer, M.: Interpolation mit intervallfunktionalen. Math. Z. 146, 7–15 (1976)

    Article  MathSciNet  Google Scholar 

  42. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  43. Popoviciu, T.: Sur une généralisation de la formule d’intégration numérique de Gauss (Romanian) Acad. R. P. Romîne Fil. Iaşi Stud. Cerc. Şti. 6, 29–57 (1955)

    MathSciNet  Google Scholar 

  44. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  45. Sharipov, R.N.: Best interval quadrature formulas for Lipschitz classes. In: Constructive Theory of Functions and Functional Analysis, no. IV, pp. 124–132. Kazan. Gos. Univ., Kazan’ (1983)

  46. Stahl, H.: Spurious poles in Pade approximation. J. Comput. Appl. Math. 99, 511–527 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Stahl, H., Totik, V.: General Orthogonal Polynomials. Encyclopedia of Mathematics and its Applications, 43. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  48. Szegő, G.: Orthogonal Polynomials, vol 23, 4th edn. Amer. Math. Soc. Colloq. Publ. American Mathematical Society, Providence (1975)

    Google Scholar 

  49. Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math (Szeged) 12, 30–37 (1950)

    MathSciNet  Google Scholar 

  50. Wall, H.S.: Analytic Theory of Continued Fractions. D. van Nostrand, New York (1948)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gradimir V. Milovanović.

Additional information

Communicated by Lothar Reichel.

The authors were supported in parts by the Serbian Ministry of Science and Technological Development (Project #144004G “Orthogonal Systems and Applications”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milovanović, G.V., Cvetković, A.S. Nonstandard Gaussian quadrature formulae based on operator values. Adv Comput Math 32, 431–486 (2010). https://doi.org/10.1007/s10444-009-9114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9114-y

Keywords

Mathematics Subject Classifications (2000)

Navigation