Skip to main content
Log in

An Auxetic Material With Negative Coefficient of Thermal Expansion and High Stiffness

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Thermal stress has a negative effect on structural safety in many engineering fields, so it is particularly important to eliminate this negative effect as much as possible. This problem can be solved by designing the microstructure of the materials to make the coefficient of thermal expansion (CTE) close to 0, while negative thermal expansion (NTE) materials can become an important part of zero thermal expansion materials. Negative Poisson's ratio (NPR) materials have been favored by researchers because of their bright application prospects in many fields such as medical treatment and engineering. The research of lightweight mechanical metamaterials with both NTE and NPR effects is of great significance for the development of smart sensors with mechanical and temperature sensitivities, and the realization of multi-functional integration of structure. Inspired by the structure of natrolite, a material which can adjust the CTE and Poisson's ratio (PR) in a large range at the same time is designed in this paper. The analytical formulas of the equivalent CTE, PR and Young's modulus are derived and verified by finite element simulation. Meanwhile, the concept of stiffness index is introduced and analyzed by theoretical and finite element methods. Furthermore, the shear modulus of the material is analyzed by finite element method. The results show that the analytical formulas are valid for the material and the material can not only realize NTE and NPR effects at the same time, but also exhibits high stiffness in the principal axis and other directions. In addition, 3D material extended by the proposed 2D material is proposed and verified by finite element method whose parameter analysis have also been carried out, which can achieve NTE and NPR effects in three directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The data has been enclosed in the supplementary material.

Code Availability

The codes have been enclosed in the supplementary material.

References

  1. Yu, X.-L., Zhou, J., Liang, H.-Y., Jiang, Z.-Y., Wu, L.-L.: Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater Sci. 94, 114–173 (2017)

    Article  Google Scholar 

  2. Fu, M.-H., Huang, J.-X., Zheng, B.-B., Chen, Y.-M., Huang, C.: Three-dimensional auxetic materials with controllable thermal expansion. Smart Mater. Struct. 29, 085034 (2020)

  3. Fu, M.-H., Liu, F.-M., Hu, L.-L.: A novel category of 3D chiral material with negative Poisson’s ratio. Compos. Sci. Technol. 160, 111–118 (2018)

    Article  Google Scholar 

  4. Scarpa, F., Bullough, W.A., Lumley, P.: Trends in acoustic properties of iron particle seeded auxetic polyurethane foam. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218(2), 241–244 (2004)

    Article  CAS  Google Scholar 

  5. Lim, T.C., Alderson, A., Alderson, K.L.: Experimental studies on the impact properties of auxetic materials. Phys. Status Solidi 251(2), 307–313 (2014)

    Article  CAS  Google Scholar 

  6. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987)

    Article  CAS  Google Scholar 

  7. Fu, M.-H., Chen, Y., Hu, L.-L.: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 160, 574–585 (2017)

    Article  Google Scholar 

  8. Raminhos, J.S., Borges, J.P., Velhinho, A.: Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Mater. Struct. 28(4), 045010 (2019)

  9. Ai, L., Gao, X.-L.: Metamaterials with negative Poisson’s ratio and non-positive thermal expansion. Compos. Struct. 162, 70–84 (2017)

    Article  Google Scholar 

  10. Peng, X.-L., Bargmann, S.: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. Int. J. Mech. Sci. 190, 106021. (2021)

  11. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int. J. Mech. Sci. 39(3), 305–307 (1997)

    Article  Google Scholar 

  12. Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W., Zied, K.: Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 70(7), 1042–1048 (2010)

    Article  Google Scholar 

  13. Wu,W.-W., Hu,W.-X., Qian,G.-A., Liao,H.-T., Xu,X.-Y., Berto, F.:  Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 180, 107950. (2019)

  14. Bacigalupo, A., Lepidi, M., Gnecco, G., Gambarotta, L.: Optimal design of auxetic hexa-chiral metamaterials with local resonators. Smart Mater. Struct. 25, 054009. (2016)

  15. Spadoni, A., Ruzzene, M.: Elasto-static micropolor behavior of a chira auxetic lattice. Journal of Mechanics and Physics of Solids. 60, 156–171 (2012)

    Article  Google Scholar 

  16. Grima, J.N., Gatt, R., Zammit, V., Williams, J.J., Evans, K.E., Alderson, A., Walton, R.I.: Natrolite: A zeolite with negative Poisson’s ratios. J Appl Phys. 101, 086102. (2007)

  17. Krodel, S., Delpero, T., Bergamini, A., Ermanni, P., Kochmann, D.: 3D auxetic microlattices with independently controllable acoustic band gaps and quasi-static elastic moduli. Adv. Eng. Mater. 16(4), 357–363 (2014)

    Article  Google Scholar 

  18. Chen, Y., Fu, M.-H.: A novel three-dimensional auxetic lattice meta-material with enhanced stiffness. Smart Mater. Struct. 26(11), 105029. (2017)

  19. Ai, L., Gao, X.-L.: Three-dimensional metamaterials with a negative Poisson’s ratio and a non-positive coefficient of thermal expansion. Int. J. Mech. Sci. 135, 101–113 (2018)

    Article  Google Scholar 

  20. Wei, K., Pei, Y.-M.: Development of designing lightweight composites and structures for tailorable thermal expansion(in Chinese). Chin. Sci. Bull. 62(1), 47–60 (2017)

    Article  Google Scholar 

  21. Lightfoot, P., Woodcock, D.A., Maple, M.J., Villaescusa, L.A., Wright, P.A.: The widespread occurrence of negative thermal expansion in zeolites. J. Mater. Chem. 11(1), 212–216 (2001)

    Article  CAS  Google Scholar 

  22. Lakes, R.: Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. 90(22), 221905. (2017)

  23. Zheng, B.-B., Fu, M.-H., Li, W.-H., Hu, L.-L.: A novel re-entrant honeycomb of negative thermal expansion. Smart Mater. Struct. 27, 085005 (2018)

  24. Ha, C.S., Hestekin, E., Li, J., Plesha, M.E., Lakes, R.S.: Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys. Status Solidi 252(7), 1431–1434 (2015)

    Article  CAS  Google Scholar 

  25. Yu, H.-B., Wu, W.-W., Zhang, J.-X., Chen, J.-K., Liao, H.-T., Fang, D.-N.: Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation. Compos. Struct. 210, 327–338 (2019)

    Article  Google Scholar 

  26. Wu, L.-L., Li, B., Zhou, J.: Isotropic Negative Thermal Expansion Metamaterials. ACS Appl. Mater. Interfaces. 8(27), 17721–17727 (2016)

    Article  CAS  Google Scholar 

  27. Grima, J.N., Farrugia, P.S., Gatt, R., Zammit, V.: Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J. Phys. Soc. Jpn. 76(2), 14–15 (2007)

    Article  Google Scholar 

  28. Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi B 245(11), 2395–2404 (2008)

    Article  CAS  Google Scholar 

  29. Wei, K., Chen, H.-S., Pei, Y.-M., Fang, D.-N.: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 86, 173–191 (2016)

    Article  Google Scholar 

  30. Steeves, C.A., Lucato, S.L.D.S.E., He, M., Antinucci, E., Hutchinson, J.W., Evans, A.G.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55(9), 1803–1822 (2007)

    Article  CAS  Google Scholar 

  31. Li, Y.-B., Chen, Y.-Y., Li, T.-T., Cao, S.-Y., Wang, L.-F.: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos. Struct. 189, 586–597 (2018)

    Article  Google Scholar 

  32. Xu, H., Pasini, D.: Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion. Sci. Rep. 6, 34924 (2016)

    Article  CAS  Google Scholar 

  33. Xu, H., Farag, A., Pasini, D.: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks. J. Mech. Phys. Solids 117, 54–87 (2018)

    Article  Google Scholar 

  34. Wei, K., Xiao, X.-Y.-J., Chen, J.-X., Wu, Y.-Z., Li, M.-J., Wang, Z.-G.: Additively manufactured bi-material metamaterial to program a wide range of thermal expansion. Mater. Des. 198, 109343. (2021)

  35. Wei, K., Peng, Y., Qu, Z.-L., Pei, Y.-M., Fang, D.-N.: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int. J. Solids Struct. 150, 255–267 (2018)

    Article  Google Scholar 

  36. Ni, X.-Y., Guo, X.-G., Li, J.-H., Huang, Y.-G., Zhang, Y.-H., Rogers, J.A.: 2D mechanical with widely tunable unusual modes of thermal expansion. Adv. Mater. 1905405. (2019)

  37. Miller, W., Mackenzie, D.S., Smith, C.W., Evans, K.E.: A generalised scale-independent mechanism for tailoring of thermal expansivity: Positive and negative. Mech. Mater. 40(4–5), 351–361 (2008)

    Article  Google Scholar 

  38. Fu, M.-H., Chen, Y., Hu, L.-L.: Bilinear elastic characteristic of enhanced auxetic honeycombs. Compos. Struct. 175, 101–110 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number: 11672338), Guangdong Basic and Applied Basic Research Foundation (grant number: 2020A1515010836), the Science and Technology Program of Guangzhou, China (grant number: 201904010332), and Guangdong Education Department (grant number: 2018KTSCX124).

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 11672338), Guangdong Basic and Applied Basic Research Foundation (grant number: 2020A1515010836), the Science and Technology Program of Guangzhou, China (grant number: 201904010332), and Guangdong Education Department (grant number: 2018KTSCX124).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The analysis were performed by Huang Jingxiang, Li Weihua, Chen Mingming and Fu Minghui. The first draft of the manuscript was written by Huang Jingxiang and Li Weihua and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Minghui Fu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

Appendix

Appendix

The equivalent PR of the proposed material can be expressed as \(\overline{\nu }=-\frac{Q}{R}\), in which

$$\left\{\begin{array}{c}\begin{array}{c}Q=4{P}^{2}Cos{\theta }_{1}\left(N\mathrm{Cos}{\theta }_{1}+M\mathrm{Cos}2{\theta }_{1}\right)\left(1-\mathrm{Sin}2{\theta }_{1}\right)+\sqrt{2}P\left(\mathrm{Cos}{\theta }_{1}-\mathrm{Sin}{\theta }_{1}\right)\left(\left(4{M}^{2}+\right.\right.\\ \left.\left.3{N}^{2}\right)\mathrm{Cos}{\theta }_{1}+{N}^{2}\mathrm{Cos}3{\theta }_{1}+4{M}^{2}\mathrm{Sin}{\theta }_{1}-4N{\mathrm{Cos}}^{2}{\theta }_{1}\left(-2M+N\mathrm{Sin}{\theta }_{1}\right)\right)-8M{N}^{2}Sin{\theta }_{1}{\mathrm{Sin}}^{2}2{\theta }_{1}\end{array}\\ \begin{array}{c}R=4{M}^{2}\left(\sqrt{2}P+4N{\mathrm{Sin}}^{2}{\theta }_{1}\right)+NP\left(\sqrt{2}N+P\right){\left(1+\mathrm{Cos}2{\theta }_{1}-\mathrm{Sin}2{\theta }_{1}\right)}^{2}-\\ \left.4M\mathrm{Cos}{\theta }_{1}\left(-4{N}^{2}{\mathrm{Sin}}^{2}{\theta }_{1}+\right.{P}^{2}\left(-1+\mathrm{Sin}2{\theta }_{1}\right)+\sqrt{2}NP\left(-3+\mathrm{Cos}2{\theta }_{1}+\mathrm{Sin}2{\theta }_{1}\right)\right)\end{array}\\ M={E}_{1}{t}_{1}\\ \begin{array}{c}N={E}_{2}{t}_{2}\\ P={E}_{3}{t}_{3}\end{array}\end{array}\right.$$
(12)

The equivalent Young’s modulus of the proposed material along y direction can be expressed as

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, W., Chen, M. et al. An Auxetic Material With Negative Coefficient of Thermal Expansion and High Stiffness. Appl Compos Mater 29, 777–802 (2022). https://doi.org/10.1007/s10443-021-09983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09983-y

Keywords

Navigation