Skip to main content
Log in

Ballistic Performance of Shear Thickening Fluids (STFs) Filled Paper Honeycomb Panel: Effects of Laminating Sequence and Rheological Property of STFs

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to exploit future soft body armor to achieve a more comprehensive protection than just the torso part of the body, in this study, shear thickening fluids (STFs) with different rheological properties are fabricated by planetary mixer and three-roller mills to investigate the mixing process effect on the resultant rheological behavior. Rheological results indicate the critical shear rate and the maximum viscosity of STF are deeply influenced by the dispersion degree of nano-silica particles in PEG. These STFs are then filled into a paper honeycomb partition to prepare a STF-based protective structure. Different laminating sequences of the composite panels composed one STF structure layer and nineteen layers of Kevlar fabric are obtained by simply placing the STF structure at different positions in the composite panels. The ballistic tests are conducted according to the NIJ 0101.06—Type II standard using 9 mm Full Metal Jacketed Round Nose bullets. Our results show that the absorbed energy of the composite panel with STF that thickens at higher shear rate is higher compared to that using STF that thickens at a lower shear rate. It suggests the STF with higher critical shear rate would be optimally used in ballistic impacts. In addition, ballistic testing results confirm that the STF structure placed at the rear position can significantly contribute to the increase in impact resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng, X.S., Shim, V.P.W., Tan, V.B.C.: Influence of boundary conditions on the ballistic performance of high-strength fabric targets. Int. J. Impact Eng. 32, 631–642 (2005)

    Article  Google Scholar 

  2. Danmei, S., Xiaogang, C., Mbonea, M.: Investigating ballistic impact on fabric targets with gripping yarns. Fibers Polym. 14, 1184–1189 (2013)

    Article  Google Scholar 

  3. Zhang, D., Sun, Y., Chen, L., Zhang, S., Pan, N.: Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate. Mater. Des. 54, 315–322 (2014)

    Article  CAS  Google Scholar 

  4. Billon, H.H., Robinson, D.J.: Models for the ballistic impact of fabric armour. Int. J. Impact Eng. 25, 411–422 (2001)

    Article  Google Scholar 

  5. Cheeseman, B.A., Bogetti, T.A.: Ballistic impact into fabric and compliant composite laminates. Compos. Struct. 61, 161–173 (2003)

    Article  Google Scholar 

  6. Hudspeth, M., Agarwal, A., Andrews, B., Claus, B., Hai, F., Funnell, C., Zheng, J., Chen, W.: Degradation of yarns recovered from soft-armor targets subjected to multiple ballistic impacts. Compos. Part A Appl. Sci. Manuf. 58, 98–106 (2014)

    Article  CAS  Google Scholar 

  7. Zhou, Y., Chen, X., Wells, G.: Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre. Compos. Part B 62, 198–204 (2014)

    Article  CAS  Google Scholar 

  8. Nilakantan, G., Merrill, R.L., Keefe, M., Gillespie, J.W., Wetzel, E.D.: Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of kevlar fabrics. Compos. Part B 68, 215–229 (2015)

    Article  CAS  Google Scholar 

  9. Duan, Y., Keefe, M., Bogetti, T.A., Cheeseman, B.A.: Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric. Int. J. Impact Eng. 31, 996–1012 (2005)

    Article  Google Scholar 

  10. Zhu, D., Vaidya, A., Mobasher, B., Rajan, S.D.: Finite element modeling of ballistic impact on multi-layer Kevlar 49 fabrics. Compos. Part B 56, 254–262 (2014)

    Article  CAS  Google Scholar 

  11. Crouch, I.G.: Body armour – New materials, new systems. Def. Technol. 15, 241–253 (2019)

    Article  Google Scholar 

  12. Ding, J., Tracey, P.J., Li, W., Peng, G., Whitten, P.G., Wallace, G.G.: Review on shear thickening fluids and applications. Text. Light Ind. Sci. Technol. 2, 161–173 (2013)

    Google Scholar 

  13. Hoffman, R.L.: Discontinuous and dilatant viscosity behavior inconcentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 46, 491–506 (1974)

    Article  CAS  Google Scholar 

  14. Hoffman, R.L.: Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42, 111–123 (1998)

    Article  CAS  Google Scholar 

  15. Lee, Y.S., Wagner, N.J.: Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 42, 199–208 (2003)

    Article  CAS  Google Scholar 

  16. Brady, J.F., Bossis, G.: The rheology of concentrated suspensions of spheres in simple shear-flow by numerical-simulation. J. Fluid Mech. 155, 105–129 (1985)

    Article  Google Scholar 

  17. Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today 62, 27–32 (2009)

    Article  CAS  Google Scholar 

  18. Brown, E., Jaeger, H.M.: Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77, 046602 (2014)

    Article  Google Scholar 

  19. Gürgen, S.: Tuning the Rheology of Nano-Sized Silica Suspensions with Silicon Nitride Particles. Journal of Nano Research 56, 63–70 (2019)

    Article  Google Scholar 

  20. Gürgen, S., Sofuoğlu, M.A., Kushan, M.C.: Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28, 035027 (2019)

    Article  Google Scholar 

  21. Fall, A., Huang, N., Bertrand, F., Ovarlez, G., Bonn, D.: Shear thickening of cornstarch suspensions as a re-entrant jamming transition. Phys Rev Lett 100, 018301 (2008)

    Article  Google Scholar 

  22. Zarei, M., Aalaie, J.: Application of shear thickening fluids in material development. J. mater res technol. 9, 10411–10433 (2020)

    Article  Google Scholar 

  23. Yeh, S.K., Lin, J.J., Zhuang, H.Y., Chen, Y.C., Chang, H.C., Zheng, J.Y., Yang, L.Y., Li, K.C., Chen, Y.L., Rwei, S.P.: Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength. J. Polym. Res. 26, 155 (2019)

    Article  Google Scholar 

  24. Soutrenon, M., Michaud, V.: Impact properties of shear thickening fluid impregnated foams. Smart Mater. Struct. 23, 035022 (2014)

    Article  Google Scholar 

  25. Fahool, M., Sabet, A.R.: Parametric study of energy absorption mechanism in Twaron fabric impregnated with a shear thickening fluid. Int. J. Impact Eng. 90, 61–71 (2016)

    Article  Google Scholar 

  26. Haro, E.E., Odeshi, A.G., Szpunar, J.A.: The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. Int. J. Impact Eng. 96, 11–22 (2016)

    Article  Google Scholar 

  27. Rizzol, F., Pintol, F., Meo, M.: Investigation of Silica-Based Shear Thickening Fluid in Enhancing Composite Impact Resistance Appl. Compos. Mater. 27, 209–229 (2020)

    Article  Google Scholar 

  28. Liu, M., Jian, W., Wang, S., Xuan, S., Bai, L., Sang, M., Gong, X.: Shear thickening fluid with tunable structural colors. Smart Mater. Struct. 27, 095012 (2018)

    Article  Google Scholar 

  29. Gürgen, S., Sofuoğlub, M.A.: Integration of shear thickening fluid into cutting tools for improved turning operations. Journal of Manufacturing Processes 56, 1146–1154 (2020)

    Article  Google Scholar 

  30. Lin, K., Zhou, A., Liu, H., Liu, Y., Huang, C.: Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structures 26, 214–223 (2020)

    Article  Google Scholar 

  31. Guo, Y., Wei, Y., Zou, J., Huang, C., Wu, X., Liu, Z., Yang, Z.: Impact and usage of the shear thickening fluid (STF) material in damping vibration of bolted flange joints. Smart Mater. Struct. 28, 095005 (2019)

    Article  CAS  Google Scholar 

  32. Gürgen, S., Sofuoğlub, M.A.: Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos. B Eng. 186, 107831 (2020)

    Article  Google Scholar 

  33. Gürgen, S., Sofuoğlub, M.A.: Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Compos. Struct. 226, 111236 (2019)

    Article  Google Scholar 

  34. Gürgen, S., Sert, A.: Polishing operation of a steel bar in a shear thickening fluid medium. Compos. B Eng. 175, 107127 (2019)

    Article  Google Scholar 

  35. Lee, Y.S., Wetzel, E.D., Wagner, N.J.: The ballistic impact characteristics of Kevlar®woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38, 2825–2833 (2003)

    Article  CAS  Google Scholar 

  36. Gürgen, S., Kuşhan, M.C.: The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017)

    Article  Google Scholar 

  37. Pinto, F., Meo, M.: Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression. Appl. Compos. Mater. 24, 643–660 (2017)

    Article  CAS  Google Scholar 

  38. Hassan, T.A., Rangari, V.K., Jeelani, S.: Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater. Sci. Eng. A 527, 2892–2899 (2010)

    Article  Google Scholar 

  39. Majumdar, A., Butola, B.S., Srivastava, A.: Optimal designing of soft body armour materials using shear thickening fluid. Mater. Des. 46, 191–198 (2013)

    Article  CAS  Google Scholar 

  40. Cwalina, C.D., Mccutcheon, C.M., Dombrowski, R.D., Wagner, N.J.: Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF) – Armor absorber layers. Compos. Sci. Technol. 131, 61–66 (2016)

    Article  CAS  Google Scholar 

  41. Sharma, A.K., Tiwari, A.K., Dixit, A.R.: Rheological behavior of nanofluids : A review. Renew. Sust. Energ. Rev. 53, 779–791 (2016)

    Article  CAS  Google Scholar 

  42. Gürgen, S., Kuşhan, M.C., Li, W.: Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 75, 48–72 (2017)

    Article  Google Scholar 

  43. Srivastava, A., Majumdar, A., Butola, B.S.: Improving the Impact Resistance of Textile Structures by using Shear Thickening Fluids: A Review. Crit. Rev. Solid State Mater. Sci. 37, 115–129 (2012)

    Article  CAS  Google Scholar 

  44. Park, Y., Kim, Y., Baluch, A.H., Kim, C.: Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. Int. J. Impact Eng. 72, 67–74 (2014)

    Article  Google Scholar 

  45. Hasanzadeh, M., Mottaghitalab, V., Babaei, H., Rezaei, M.: The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos. Part A Appl. Sci. Manuf. 88, 263–271 (2016)

    Article  CAS  Google Scholar 

  46. Lu, Z., Yuan, Z., Chen, X., Qiu, J.: Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos. Struct. 227, 111208 (2019)

    Article  Google Scholar 

  47. Gürgen, S., Kuşhan, M.C.: The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech. Adv. Mater. Struct. 24, 1381–1390 (2017)

    Article  Google Scholar 

  48. Wierzbickil, L., Danelska, A., Olszewska, K., Tryznowski, M., Zielińska, D., Kucińska, I., Szafran, M., Leonowicz, M.: Shear thickening fluids based on nanosized silica suspensionsfor advanced body armour. Theory Pract. -Pol. Soceity Compos. Mater 13, 241–244 (2013)

    Google Scholar 

  49. Park, J.L., Yoon, B.I., Paik, J.G., Kang, T.J.: Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; Part I-Effect of laminating sequence. Text. Res. J. 82, 527–541 (2012)

    Article  CAS  Google Scholar 

  50. Gürgen, S.: An investigation on composite laminates including shear thickening fluid under stab condition. J. Compos. Mater. 53, 1111–1122 (2019)

    Article  Google Scholar 

  51. Wu, X., Yin, Q., Huang, C., Zhong, F.: Dynamic energy absorption behavior of lattice material filled with shear thickening fluid. Procedia Eng. 199, 2514–2518 (2017)

    Article  Google Scholar 

  52. Clark, J., Jenson, S., Schultz, J., Hoffman, J., Takak, S., Kara, T., Ali, M.: Study of impact properties of a fluid-filled honeycomb structure: ASME IMECE, p. 2013. San Diego, CA (2013)

    Google Scholar 

  53. Jenson, S., Ali, M., Alam, K., Hoffman, J.: Experimental Study of Energy Absorption of Fluid-Filled Honeycomb Structure. 2014 ASME IMECE, Montreal, Canada (2014). http://www.asmeconferences.org/congress2014/

  54. U.S. Department of Justice: Ballistic Resistance of Body Armor. NIJ Stand 2008, 1–55. https://doi.org/10.1017/CBO9781107415324.004

  55. Brown, E., Forman, N.A., Orellana, C.S., Zhang, H., Maynor, B.W., Betts, D.E., Desimone, J.M., Jaeger, H.M.: Generality of shear thickening in dense suspensions. Nat. Mater. Lett. 9, 220–224 (2010)

    Article  CAS  Google Scholar 

  56. Antosik, A., Gluszek, M., Zurowski, R., Szafran, M.: Influence of carrier fluid on the electrokinetic and rheological properties of shear thickening fluids. Ceram. Int. 43, 12293–12301 (2017)

    Article  CAS  Google Scholar 

  57. An, C., Xiang, C., Jia, Q., Wang, F.: A new view on improving the preparation efficiency of shear thickening fluid. IOP Conf. Series: Earth and Environmental Science 295, 032088 (2019)

    Google Scholar 

  58. Hassan, T.A., Rangari, V.K., Jeelani, S.: Sonochemical synthesis and rheological properties of shear thickening silica dispersions. Ultrason. Sonochem. 17, 947–952 (2010)

    Article  CAS  Google Scholar 

  59. Chen, Q., Zhu, W., Ye, F., Gong, X., Jiang, W., Xuan, S.: pH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions. Mater. Res. Express 1, 015303 (2014)

    Article  Google Scholar 

  60. Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetzel, E.D.: Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67, 565–578 (2007)

    Article  CAS  Google Scholar 

  61. Feng, X., Li, S., Wang, Y., Wang, Y., Liu, J.: Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids. Mater. Des. 64, 456–461 (2014)

    Article  CAS  Google Scholar 

  62. Tan, Z.H., Zuo, L., Li, W.H., Liu, L.S., Zhai, P.C.: Dynamic response of symmetrical and asymmetrical sandwich plates with shear thickening fluid core subjected to penetration loading. Mater. Des. 94, 105–110 (2016)

    Article  CAS  Google Scholar 

  63. Cao, S., Chen, Q., Wang, Y., Xuan, S., Jiang, W., Gong, X.: High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 100, 161–169 (2017)

    Article  CAS  Google Scholar 

  64. National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Division on Engineering and Physical Sciences, Board on Army Science and Technology, Committee on Testing of Body Armor Materials for Use by the U.S. Army: Testing of Body Armor Materials: Phase III. National Academies Press (2012)

  65. Park, J.L., Chi, Y.S., Hahn, M.H., Kang, T.J.: Kinetic Dissipation in Ballistic Tests of Soft Body Armors. Exp. Mech. 52, 1239–1250 (2012)

    Article  Google Scholar 

  66. Ávila, A.F., de Oliveira, A.M., Leãob, S.G., Martins, M.G.: Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact. Compos. Part A Appl. Sci. Manuf. 112, 468–474 (2018)

    Article  Google Scholar 

  67. Carlucci, D.E., Jacobson, S.S.: Ballistics : theory and design of guns and ammunition. CRC Press, New York (2008)

    Google Scholar 

  68. Pandya, K.S., Kumar, C.V.S., Nair, N.S., Patil, P.S., Naik, N.K.: Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites. Int. J. Damage Mech. 24, 471–511 (2015)

    Article  Google Scholar 

  69. Prasad, V.V., Talupula, S.: A Review on Reinforcement of Basalt and Aramid (Kevlar 129). Mater. Today Proc. 5, 5993–5998 (2018)

    Article  Google Scholar 

  70. Fu, K., Wang, H., Chang, L., Foley, M., Friedrich, K., Ye, L.: Low-velocity impact behaviour of a shear thickening fluid (STF) and STF filled sandwich composite panels. Compos. Sci. Technol. 165, 74–83 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by Ministry of Science and Technology of Taiwan under Grant No. MOST 107-2623-E-606-001-D and No. MOST 106-2623-E-606-005-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Der Ger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, CH., Chang, CP., Liu, YM. et al. Ballistic Performance of Shear Thickening Fluids (STFs) Filled Paper Honeycomb Panel: Effects of Laminating Sequence and Rheological Property of STFs. Appl Compos Mater 28, 201–218 (2021). https://doi.org/10.1007/s10443-020-09860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09860-0

Keywords

Navigation