Skip to main content
Log in

Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S–N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronaut 55, 409–420 (2004). doi:10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  3. DiCarlo, J.A., Van Roode, M.: Ceramic composite development for gas turbine hot section components. Proc ASME Turbo Expo Power Land Sea Air 2, 221–231 (2006)

    Google Scholar 

  4. Stephen, T.: General Electric primes CMC for turbine blades. Flight International, 2010. http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/

  5. Gowayed, Y., Ojard, G., Santhosh, U., Jefferso, G.: Modeling of crack density in ceramic matrix composites. J Compos Mater 49, 2285–2294 (2015). doi:10.1177/0021998314545188

    Article  Google Scholar 

  6. Li, L.B.: Fatigue hysteresis of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Appl Compos Mater 23, 1–27 (2016). doi:10.1007/s10443-015-9448-1

    Article  Google Scholar 

  7. Li, L.B.: Modeling fatigue hysteresis behavior of unidirectional C/SiC ceramic-matrix composite. Compos Part B 66, 466–474 (2014). doi:10.1016/j.compositesb.2014.06.014

    Article  Google Scholar 

  8. Li, L.B.: Fatigue life prediction of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part I: Experimental analysis. Appl Compos Mater 23, 101–117 (2016). doi:10.1007/s10443-015-9446-3

    Article  Google Scholar 

  9. Li, L.B.: Fatigue life prediction of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part II: Experimental comparisons. Appl Compos Mater 22, 961–972 (2015). doi:10.1007/s10443-015-9445-4.

    Article  Google Scholar 

  10. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater 46, 3409–3420 (1998). doi:10.1016/S1359-6454(98)00041-X

    Article  Google Scholar 

  11. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall Mater 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  Google Scholar 

  12. Lee, S.S., Stinchcomb, W.W.: Damage mechanisms of cross-ply Nicalon/CAS-II laminate under cyclic tension. Ceram Eng Sci Proc 15, 40–48 (1994). doi:10.1002/9780470314500.ch5

    Article  Google Scholar 

  13. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos Part A 30, 549–554 (1999). doi:10.1016/S1359-835X(98)00148-1

    Article  Google Scholar 

  14. Casas, L., Martinez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behavior of fiber-reinforced ceramic matrix composites. Acta Mater 51, 3745–3757 (2003). doi:10.1016/S1359-6454(03)00189-7

    Article  Google Scholar 

  15. Li, L.B.: Fatigue damage models and life prediction of long-fiber-reinforced ceramic matrix composites. PhD Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2010.

  16. Shuler, S.F., Holmes, J.W., Wu, X.: Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite. J Am Ceram Soc 76, 2327–2336 (1993). doi:10.1111/j.1151-2916.1993.tb07772.x

    Article  Google Scholar 

  17. Mall, S., Engesser, J.M.: Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos Sci Technol 66, 863–874 (2006). doi:10.1016/j.compscitech.2005.06.020

    Article  Google Scholar 

  18. Zhang, C.Y., Wang, X.W., Liu, Y.S., Wang, B., Han, D.: Tensile fatigue of a 2.5D-C/SiC composite at room temperature and 900°C. Mater. Design 49, 814–819 (2013). doi:10.1016/j.matdes.2013.01.076

    Google Scholar 

  19. Yang, F.S.: Research on fatigue behavior of 2.5d woven ceramic matrix composites. Master Thesis, Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.

  20. Du, S.M., Qiao, S.R., Ji, G.C., Han, D.: Tension-tension fatigue behavior of 3D-C/SiC composite at room temperature and 1300°C. J Mater Eng 9, 22–25 (2002)

    Google Scholar 

  21. Liu, X.F.: Tension-tension fatigue behavior of 3D-C/SiC composite at elevated temperature. Master Thesis, Northwestern Polytechnic University 2003.

  22. Du, S.M., Qiao, S.R.: Tension-tension fatigue behavior of 3D-C/SiC composite at 1500°C. J Mater Eng 5, 34–36 (2011)

    Google Scholar 

Download references

Acknowledgments

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Ethics declarations

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813), and the Fundamental Research Funds for the Central Universities (Grant No. NS2016070).

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites. Appl Compos Mater 23, 799–819 (2016). https://doi.org/10.1007/s10443-016-9486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9486-3

Keywords

Navigation