Skip to main content
Log in

Forming Simulation of Thick AFP Laminates and Comparison with Live CT Imaging

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Automated fiber placement (AFP) process can be used to manufacture laminates by laying up unidirectional slit tapes along a desired path and placing multiple layers on top of each other. Usually, the slit tapes are placed direct onto the tooling to attain the final part geometry. Alternatively, the laminate can be built up on a planar substrate and can be subsequently formed into the final shape. This kind of processing allows manufacturing highly curved parts, which may not be possible with the direct placement. In the present work a forming simulation of thick AFP laminates is developed to predict the tapes’ orientations and delamination as well as transverse tape spread-ups and separations during the forming process. The simulation model is built up through the material characterization experiments. Validation is performed comparing the results of the simulation vs. the experimental forming on two generic geometries. An optical inspection is made on the external layers of the laminates. In a second step, live computer tomography (CT) scans are used to inspect the tapes within an AFP laminate during forming of an L- and a Z-flange. Tapes re-orientation, gaps and tapes widening are observed experimentally and compared to the simulation results. The simulation is capable to predict the tows orientation and provides indicators concerning the tows spread-up and separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Middendorf P., Metzner C.: Aerospace applications of non-crimp fabric composites. In: Lomov S.V. (ed.) Non-Crimp Fabric Composites - Manufacturing, Properties and Applications, pp. 441–448. Cambridge, Woodhead (2011)

    Chapter  Google Scholar 

  2. Lukaszewicz D.H., Ward C., Potter K.D.: The engineering aspects of automated prepreg layup: history, present and future. Compos Part B- Eng. 43(3), 997–1009 (2012). doi:10.1016/j.compositesb.2011.12.003

    Article  Google Scholar 

  3. Åström. Manufacturing of polymer composites. London, UK: Chapman & Hall; ISBN: 978–0-7487-7076-2 (1997).

  4. Campbell F.C.: Manufacturing processes for advanced composites. Elsevier Advanced Technology, Oxford ISBN: 9781856174152 (2004)

    Google Scholar 

  5. Lichtinger R., Hörmann P., Stelzl D., et al.: The effects of heat input on adjacent paths during automated fibre placement. Compos Part A-Appl S. 68, 387–397 (2015). doi:10.1016/j.compositesa.2014.10.004

    Article  Google Scholar 

  6. Haanappel SP, Thije RHW ten, Akkerman R. Forming predictions of UD reinforced thermoplastic laminates. ECCM 14, Budapest (2010); http://purl.utwente.nl/publications/74775

  7. Haanappel SP, ten Thije RHW, Sachs U, Rietman B, Akkerman R. Formability analyses of uni-directional and textile reinforced thermoplastics. Compos Part A-Appl S 56: 80–92 (2014). doi/10.1016/j.compositesa.2013.09.009

  8. ten Thije R. Finite element simulations of laminated composites forming processes. Dissertation, Universiteit Twente; ISBN-13: 978–90-365-2546-6 (2007).

  9. Gorczyca J.L., Sherwood J.A., Liu L., Chen J.: Modeling of friction and shear in thermostamping of composites - part I. J. Compos. Mater. 38(21), 1911–1929 (2004). doi:10.1177/0021998304048416

    Article  Google Scholar 

  10. Liu L., Gorczyca J.L., Sherwood J.A.: Modeling of friction and shear in thermostamping of composites - part II. J. Compos. Mater. 38(21), 1931–1947 (2004). doi:10.1177/0021998304048417

    Article  Google Scholar 

  11. Clifford M, Long A, de Luca P. Forming of engineered prepregs and reinforced thermoplastic. In: Proc. 130th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society CTMSJ, New Orleans (2001).

  12. Harrison P., Clifford M.J., Long A.C., Rudd C.D.: A constituent-based predictive approach to modelling the rheologyof viscous textile composites. Compos Part A-Appl S. 35, 915–931 (2004). doi:10.1016/j.compositesa.2004.01.005

    Article  Google Scholar 

  13. Lin H., Wang J., Long A.C., Clifford M.J., Harrison P.: Predictive modelling for optimization of textile composite forming. Compos. Sci. Technol. 67, 3242–3252 (2007). doi:10.1016/j.compscitech.2007.03.040

    Article  Google Scholar 

  14. Badel P., Maire E., Vidal-Sallé E., Boisse P.: Computational determination of the mechanical behavior of textile composite reinforcement. Validation with x-ray tomography. Int J Mater Form. 1(1), 823–826 (2008). doi:10.1007/s12289-008-0262-2

    Article  Google Scholar 

  15. Naouar N., Vidal-Sallé E., Schneider J., Maire E., Boisse P.: Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography. Compos. Struct. 116, 165–176 (2014). doi:10.1016/j.compstruct.2014.04.026

    Article  Google Scholar 

  16. Barburski M., Straumit I., Lomov S.V.: Internal structure of the sheared textile composite reinforcement: analysis using X-Ray Tomography". Key Eng. Mater. 651-653, 325–330 (2015). doi:10.4028/www.scientific.net/KEM.651-653.325

    Article  Google Scholar 

  17. PAM-FORM Solver Notes (2009), ESI Group

  18. McGuinness G.B., CM O.B.: Development of rheological models for forming flows and picture-frame shear testing of fabric reinforced thermoplasticsheets. J. Non-Newtonian Fluid Mech. 73, 1–28 (1997)

    Article  Google Scholar 

  19. DIN Bestimmung der Biegesteifigkeit - Verfahren nach Cantilever (53362:2003–10) (2003).

  20. Palfinger W., Thumfart S., Eitzinger C.: Photometric Stereo on Carbon Fiber Surfaces. Steyr-Gleink, Austria (2011)

    Google Scholar 

  21. Schug A.: Validation Method for Evaluating Forming Simulations of Composite Textiles. Diplomarbeit, Technische Universität München (2013)

    Google Scholar 

  22. Hamila N., Boisse P.: Tension locking in finite-element analyses of textile composite reinforcement deformation. Comptes Rendus Mécanique. 341(6), 508–519 (2013). doi:10.1016/j.crme.2013.03.001

    Article  Google Scholar 

  23. Hamila N., Boisse P.: Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos Part A-Appl S. 39(7), 1167–1176 (2013). doi:10.1016/j.compositesa.2013.06.001

    Google Scholar 

  24. tenThije R., R. A.: Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Compos Part A-Appl S. 53(7), 109–117 (2008). doi:10.1016/j.compositesa.2008.03.014

    Google Scholar 

  25. Yu X., Cartwright B., McGuckin D., Ye L., Mai Y.W.: Intra-ply shear locking in finite element analyses of woven fabric forming processes. Compos Part A-Appl S. 37(5), 790–803 (2006). doi:10.1016/j.compositesa.2005.04.024

    Article  Google Scholar 

  26. Haanappel S., Akkerman R.: Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion. Compos Part A-Appl S. 56, 8–26 (2014). doi:10.1016/j.compositesa.2013.09.007

    Article  Google Scholar 

  27. Sachs U, Haanappel S, Rietman B, Akkerman R. Friction testing of thermoplastic composites. In: SEICO 11 Paris: SAMPE Europe’s 32nd International Technical Conference and Forum (2011).

  28. Fetfatsidis K., Gamache L., Gorczyca J., Sherwood J.A., Jauffres D., Chen J.: Design of an apparatus for measuring tool/fabric and fabric/fabric friction of woven-fabric composites during the thermostamping process. Int. J. Mater. Form. 6(1), 1–11 (2013). doi:10.1007/s12289-011-1058-3

    Article  Google Scholar 

  29. Margossian A, Ding M, Avila Gray L et al. Flexural Characterisation of Unidirectional Thermoplastic Tapes using a Dynamic Mechanical Analysis system. In: ECCM 16 (2015).

  30. Margossian A., Bel S., Hinterhoelzl R.: Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mechanical analysis system. Compos Part A-Appl S. (2015). doi:10.1016/j.compositesa.2015.06.015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Leutz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leutz, D., Vermilyea, M., Bel, S. et al. Forming Simulation of Thick AFP Laminates and Comparison with Live CT Imaging. Appl Compos Mater 23, 583–600 (2016). https://doi.org/10.1007/s10443-016-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9475-6

Keywords

Navigation