Skip to main content
Log in

A Joint Numerical-Experimental Study on Impact Induced Intra-laminar and Inter-laminar Damage in Laminated Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The investigation of the mechanical response of fibre-reinforced composite laminates under impact loads can be very difficult due to the occurrence of simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damages, like fibre and matrix cracking, and inter-laminar damages, such as delaminations, can take place simultaneously. These damage mechanisms can lead to significant reductions in strength and stability of the composite structure. In this paper a joint numerical-experimental study is proposed which, by means of non-destructive testing techniques (Ultra-sound and thermography) and non-linear explicit FEM analyses, aims to completely characterise the impact induced damage in composite laminates under low velocity impacts. Indeed the proposed numerical tool has been used to improve the understanding of the experimental data obtained by Non-Destructive Techniques. Applications on samples tested according to the AECMA (European Association of Aerospace Manufacturers) prEn6038 standard at three different impact energies are presented. The interaction between numerical and experimental investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the inter-laminar damage formation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Reid, S., Zhou, G.: Impact Behaviour of Fibre-reinforced Composite Materials and Structures. CRC Press, Cambridge (2000)

    Book  Google Scholar 

  3. Varas, D., Artero-Guerrero, J., Pernas-Sánchez, J., López-Puente, J.: Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates. Compos. Struct. 95, 623–629 (2013)

    Article  Google Scholar 

  4. Artero-Guerrero, J., Pernas-Sánchez, J., Varas, D., López-Puente, J.: Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact. Compos. Struct. 96, 286–297 (2013)

    Article  Google Scholar 

  5. Riccio, A., Di Felice, G., Saputo, S., Scaramuzzino, F.: A numerical study on low velocity impact induced damage in stiffened composite panels. J. Comput. Simul. Model. 3(1), 044–047 (2013)

    Google Scholar 

  6. Caputo, F., Di Gennaro, F., Lamanna, G., Lefons, A., Riccio, A.: Numerical procedures for damage mechanisms analysis in CFRP composites. Key Eng. Mater. 569–570, 111–118 (2013)

    Article  Google Scholar 

  7. Soutis, C., Curtis, P.T.: Prediction of the post-impact compressive strength of CFRP laminated composites. Compos. Sci. Technol. 56, 677–684 (1996)

    Article  Google Scholar 

  8. Wisnom, M.R.: The role of delamination in failure of fibre-reinforced composites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1965), 1850–1870 (2012)

    Article  Google Scholar 

  9. Abrate, S.: Modeling of impacts on composite structures. Compos. Struct. 51, 129–138 (2001)

    Article  Google Scholar 

  10. Feraboli, P., Kedward, K.T.: A new composite structure impact performance assessment program. Compos. Sci. Technol. 66, 1336–1347 (2006)

    Article  Google Scholar 

  11. Lopes, C.S., Seresta, O., Coquet, Y., Gnrdal, Z., Camanho, P.P., Thuis, B.: Low-velocity impact damage on dispersed stacking sequence laminates. Part I: experiments. Compos. Sci. Technol. 69, 926–936 (2009)

    Article  Google Scholar 

  12. Tita, V., de Carvalho, J., Vandepitte, D.: Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos. Struct. 83, 413–428 (2008)

    Article  Google Scholar 

  13. Aktas, M., Atas, C., Is_ten, B.M., Karakuzu, R.: An experimental investigation of the impact response of composite laminates. Compos. Struct. 87, 307–313 (2009)

    Article  Google Scholar 

  14. Li, C., Hu, N., Yin, Y., Sekine, H., Fukunaga, H.: Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos. Part A 33, 1055–1062 (2002)

    Article  Google Scholar 

  15. González, E.V., Maimí, P., Camanho, P.P., Turon, A., Mayugo, J.A.: Simulation of dropweight impact and compression after impact tests on composite laminates. Compos. Struct. 94(11), 3364–3378 (2012)

    Article  Google Scholar 

  16. Riccio, A., Raimondo, A., Fragale, S., Camerlingo, F., Gambino, B., Toscano, C., Tescione, D.: Delaminations buckling and growth phenomena in stiffened composite panels under compression. Part I: an Experimental Study. J. Compos. Mater. (2013). doi:10.1177/0021998313502741

    Google Scholar 

  17. Riccio, A., Raimondo, A., Di Caprio, F., Scaramuzzino, F.: Delaminations buckling and growth phenomena in stiffened composite panels under compression. Part II: a Numerical Study. J. Compos. Mater. (2013). doi:10.1177/0021998313502742

    Google Scholar 

  18. Choi, I.H.: Low-velocity impact analysis of composite laminates under initial inplane load. Compos. Struct. 86, 251–257 (2008) [Fourteenth International Conference on Composite Structures (ICCS/14)]

    Article  Google Scholar 

  19. Olsson, R.: Analytical prediction of large mass impact damage in composite laminates. Compos. Part A 32, 1207–1215 (2001)

    Article  Google Scholar 

  20. Olsson, R., Donadon, M.V., Falzon, B.G.: Delamination threshold load for dynamic impact on plates. Int. J. Solids Struct. 43, 3124–3141 (2006)

    Article  Google Scholar 

  21. Elder, D.J., Thomson, R.S., Nguyen, M.W., Scott, M.L.: Review of delamination predictive methods for low speed impact of composite laminates. Compos. Struct. 66, 677–683 (2004)

    Article  Google Scholar 

  22. Riccio, A., Raimondo, A., Borrelli, R., Mercurio, U., Tescione, D., Scaramuzzino, F.: Numerical simulations of inter-laminar damage evolution in a composite wing box. Appl. Compos. Mater. (2013). doi:10.1007/s10443-013-9347-2

    Google Scholar 

  23. Pietropaoli, E., Riccio, A.: Finite element analysis of the stability (buckling and post- buckling) of composite laminated structures: well established procedures and challenges. Appl. Compos. Mater. 19, 79–96 (2012)

    Article  Google Scholar 

  24. Allix, O., Ladeveze, P., Corigliano, A.: Damage analysis of interlaminar fracture specimens. Compos. Struct. 31(1), 61–74 (1995)

    Article  Google Scholar 

  25. Tay, T.E., Liu, G., Tan, V.B.C., Sun, X.S., Pham, D.C.: Progressive failure analysis of composites. J. Compos. Mater. 42(18), 1921–1964 (2008)

    Article  Google Scholar 

  26. Wisnom, M.R.: Modelling discrete failures in composites with interface elements. Compos. A: Appl. Sci. Manuf. 41(7), 795–805 (2010)

    Article  Google Scholar 

  27. Riccio, A., Scaramuzzino, F., Perugini, P.: Influence of contact phenomena on embedded delamination growth in composites. AIAA J. 41(5), 933–940 (2003)

    Article  Google Scholar 

  28. Riccio, A., Raimondo, A., Scaramuzzino, F.: Skin stringer debonding evolution in stiffened composites under compressive load: a novel numerical approach. Key Eng. Mater. 577–578, 605–608 (2014)

    Google Scholar 

  29. Riccio, A., Raimondo, A., Scaramuzzino, F.: A study on skin delaminations growth in stiffened composite panels by a novel numerical approach. Appl. Compos. Mater. 20(4), 465–488 (2013)

    Article  Google Scholar 

  30. Tay, T.E.: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl. Mech. Rev. 56(1), 1–32 (2003)

    Article  Google Scholar 

  31. Camanho, P.P., Davila, C.G., De Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  32. Wang, Y., Williams, J.G.: Corrections for mode II fracture toughness specimens of composites materials. Compos. Sci. Technol. 43, 251–256 (1992)

    Article  Google Scholar 

  33. Suemasu, H.: An experimental method to measure the mode-III inter-laminar fracture toughness of composite laminates. Compos. Sci. Technol. 59, 1015–1021 (1999)

    Article  Google Scholar 

  34. Pietropaoli, E., Riccio, A.: Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Compos. Sci. Technol. 71(6), 836–846 (2011)

    Article  Google Scholar 

  35. Aymerich, F., Dore, F., Priolo, P.: Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos. Sci. Technol. 69, 1699–1709 (2009)

    Article  Google Scholar 

  36. Amaro, A.M., Santos, J.B., Cirne, J.S.: Delamination depth in composites laminates with interface elements and ultrasound analysis. Strain 47(2), 138–145 (2011)

    Article  Google Scholar 

  37. Pietropaoli, E., Riccio, A.: On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos. Sci. Technol. 70(8), 1288–1300 (2010)

    Article  Google Scholar 

  38. Bouvet, C., Rivallant, S., Barrau, J.J.: Low velocity impact modeling in composite laminates capturing permanent indentation. Compos. Sci. Technol. 72(16), 1977–1988 (2012)

    Article  Google Scholar 

  39. De Moura, M.F.S.F., Gonçalves, J.P.M.: Modelling the interaction between matrix cracking and delamination in carbon–epoxy laminates under low velocity impact. Compos. Sci. Technol. 64(7), 1021–1027 (2004)

    Article  Google Scholar 

  40. Zhang, Y., Zhu, P., Lai, X.: Finite element analysis of low-velocity impact damage in composite laminated plates. Mater. Des. 27(6), 513–519 (2006)

    Article  Google Scholar 

  41. Aoki, Y., Suemasu, H., Ishikawa, T.: Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Adv. Compos. Mater. 16(1), 45–61 (2007)

    Article  Google Scholar 

  42. Aymerich, F., Dore, F., Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos. Sci. Technol. 68(12), 2383–2390 (2008)

    Article  Google Scholar 

  43. Bouvet, C., Castanié, B., Bizeul, M., Barrau, J.J.: Low velocity impact modelling in laminate composite panels with discrete interface elements. Int. J. Solids Struct. 46, 2809–2821 (2009)

    Article  Google Scholar 

  44. Bouvet, C., Hongkarnjanakul, N., Rivallant, S., Barrau, J.J.: Discrete impact modeling of inter- and intra-laminar failure in composites. In: Abrate, S., Castanié, B., Rajapakse, Y.D.S. (eds.) Dynamic Failure of Composite and Sandwich Structures, pp. 339–392. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  45. De Borst, Remmers, J.J., Needleman, A.: Mesh-independent discrete numerical representations of cohesive-zone models. Eng. Fract. Mech. 73(2), 160–177 (2006)

    Article  Google Scholar 

  46. Iannucci, L.: Progressive failure modelling of woven carbon composite under impact. Int. J. Impact Eng. 32(6), 1013–1043 (2006)

    Article  Google Scholar 

  47. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: part I—constitutive model. Mech. Mater. 39, 897–908 (2007)

    Article  Google Scholar 

  48. Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., de Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low velocity impact damage. Comput. Struct. 86, 1232–1252 (2008)

    Article  Google Scholar 

  49. Maimí, P., Mayugo, J.A., Camanho, P.P.: A three-dimensional damage model for transversely isotropic composite laminates. J. Compos. Mater. 42(25), 2717–2745 (2008)

    Article  Google Scholar 

  50. Falzon, B.G., Apruzzese, P.: Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation. Compos. Struct. 93, 1039–1046 (2011)

    Article  Google Scholar 

  51. Falzon, B.G., Apruzzese, P.: Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: applications. Compos. Struct. 93, 1047–1053 (2011)

    Article  Google Scholar 

  52. Garnich, M.R., Akula, V.M.K.: Review of degradation models for progressive failure analysis of fiber reinforced polymer composites. Appl. Mech. Rev. 62(1), 1–33 (2009)

    Article  Google Scholar 

  53. Riccio, A., Di Felice, G., Saputo, S., Scaramuzzino, F.: Stacking sequence effects on damage onset in composite laminate subjected to low velocity impact. Procedia Eng. 88(1), 222–229 (2014)

    Article  Google Scholar 

  54. Lopes, C.S., Camanho, P.P., Gürdal, Z., Maimí, P., González, E.V.: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations. Compos. Sci. Technol. 69, 937–947 (2009)

    Article  Google Scholar 

  55. Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. A: Appl. Sci. Manuf. 41, 737–749 (2010)

    Article  Google Scholar 

  56. Shi, Y., Swait, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 94(9), 2902–2913 (2012)

    Article  Google Scholar 

  57. ABAQUS Analysis user’s manual 6.11 (2011)

  58. Hashin, Z., Rotem, A.: A fatigue criterion for fiber -reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  59. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  60. Camanho, P.P., Davila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737, pp. 1–37. (2002)

  61. Bazant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete. Mater. Struct. 16, 155–177 (1983)

    Google Scholar 

  62. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. A: Appl. Sci. Manuf. 38(11), 2333–2341 (2007)

    Article  Google Scholar 

  63. Toscano, C., Riccio, A., Camerlingo, F., Meola, C.: On the use of lockin thermography to monitor delamination growth in composite panels under compression. Sci. Eng. Compos. Mater. (2013). doi:10.1515/secm-2013-0156

    Google Scholar 

  64. Pietropaoli, E., Riccio, A.: A global/local finite element approach for predicting interlaminar and intralaminar damage evolution in composite stiffened panels under compressive load. Appl. Compos. Mater. 18(2), 113–125 (2011)

    Article  Google Scholar 

  65. Riccio, A., Di Felice, G., LaManna, G., Antonucci, V., Caputo, F., Lopresto, V., Zarrelli, M.: A global-local numerical model for the prediction of impact induced damage in composite laminates. Appl. Compos. Mater. (2013). doi:10.1007/s10443-013-9343-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Riccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccio, A., Caputo, F., Di Felice, G. et al. A Joint Numerical-Experimental Study on Impact Induced Intra-laminar and Inter-laminar Damage in Laminated Composites. Appl Compos Mater 23, 219–237 (2016). https://doi.org/10.1007/s10443-015-9457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9457-0

Keywords

Navigation