Skip to main content
Log in

Effect of Yarn Distortion on the Mechanical Properties of Fiber-Bar Composites Reinforced by Three-Dimensional Weaving

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A meso-structure model of fiber-bar composites reinforced by three-dimensional weaving (FBCR3DW) is proposed. Optical microscopy images of the preform structure revealed that the fibers along the circumference of the yarn cross-weave were twisted randomly due to alternating yarn winding on either side of the fiber bars during the manufacturing process. Sections of the cross-woven yarn were divided into five regions based on the twist characteristics. Stochastic function theory was used to describe the twist characteristics and to calculate the compliance tensor for each twisted yarn region. The twist characteristics and compliance tensor of each region were then introduced into a finite element model to calculate the elastic properties of the twisted yarn and FBCR3DW; unidirectional tensile stress–strain curves were generated based on the Tsai–Wu failure criterion. Several FBCR3DW specimens with randomly twisted yarns inside the weave structure were used in experimental tests. Our numerical results were in good agreement with the experimental values. Yarn distortion had a significant effect on the elastic properties and axial tensile strength of the yarn; specifically, the influence of yarn distortion on the transverse elastic modulus and transverse shear modulus of FBCR3DW was severe, whereas only a slight effect occurred with regard to the other elastic constants and unidirectional tensile properties. Thus, the proposed method provides an effective reference for modeling fiber composites with a weave structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Potluri, P., Hogg, P., Arshad, M., Jetavat, D., Jamshidi, P.: Influence of fibre architecture on impact damage tolerance in 3D woven composites. Appl. Compos. Mater. 19(5), 799–812 (2012)

    Article  Google Scholar 

  2. Bejan, L., Taranu, N., Sirbu, A.: Effect of hybridization on stiffness properties of woven textile composites. Appl. Compos. Mater. 20(2), 185–194 (2013)

    Article  Google Scholar 

  3. Ai, S.G., Zhu, X.L., Mao, Y.Q., Peng, Y.M., Fang, D.N.: Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment. Appl. Compos. Mater. 21, 603–614 (2014)

    Article  Google Scholar 

  4. Phoenix, S.L.: Probabilistic inter-fiber dependence and the asymptotic strength distribution of classic fiber bundles. Int. J. Eng. Sci. 13, 287–304 (1975)

    Article  Google Scholar 

  5. Phoenix, S.L.: Statistical theory for the strength of twisted fiber bundles with applications to yarns and cables. Text. Res. J. 49, 407–23 (1979)

    Article  Google Scholar 

  6. Chudoba, R., Vořechovský, M., Konrad, M.: Stochastic modeling of multi-filament yarns: I. Random properties within the cross-section and size effect. Int. J. Solids Struct. 43, 413–434 (2006)

    Article  Google Scholar 

  7. Vořechovský, M., Chudoba, R.: Stochastic modeling of multi-filament yarns: II. Random properties over the length and size effect. Int. J. Solids Struct. 43, 435–458 (2006)

    Article  Google Scholar 

  8. Vořechovský, M.: Incorporation of statistical length scale into Weibull strength theory for composites. Compos. Struct. 92, 2027–2034 (2010)

    Article  Google Scholar 

  9. Chudoba, R., Vořechovský, M., Eckers, V., Gries, T.: Effect of twist, fineness, loading rate and length on tensile behavior of multifilament yarns (a multivariatestudy). Text. Res. J. (Sage). 77(11), 880–91 (2007)

    Article  Google Scholar 

  10. Lekou, D.J., Philippidis, T.P.: Mechanical property variability in FRP laminates and its effect on failure prediction. Compos. Part B 39, 1247–1256 (2008)

    Article  Google Scholar 

  11. Jeong, H.K., Shenoi, R.A.: Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Comput. Struct. 76(3), 219–235 (2000)

    Article  Google Scholar 

  12. Onkar, A.K., Upadhyay, C.S., Yadav, D.: Probabilistic failure of laminated composite plates using the stochastic finite element method. Compos. Struct. 77(1), 79–91 (2007)

    Article  Google Scholar 

  13. Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided performs. Compos. Sci. Technol. 59, 391–404 (1999)

    Article  Google Scholar 

  14. Yao, L., Wang, X., Xu, F.J., Jiang, M.W., Zhou, D.C., Qiu, Y.P.: Effect of wire space and weaving patternon performance of microstrip antennas integrated in the three dimensional orthogonal woven composites. Appl. Compos. Mater. 19(1), 21–30 (2012)

    Article  Google Scholar 

  15. Cuong, H.M., Boussu, F., Kanit, T., Crepin, D., Imad, A.: Effect of frictions on the ballistic performanceof a 3D warp interlock fabric: numerical analysis. Appl. Compos. Mater. 19(3–4), 333–347 (2012)

    Google Scholar 

  16. Matveeva, A.Y., Pyrlin, S.V., Ramos, M.M.D., Böhm, H.J., Hattum, F.W.J.: Influence of waviness and curliness of fibres on mechanical properties of composites. Comput. Mater. Sci. 87, 1–11 (2014)

    Article  Google Scholar 

  17. Velmurugan, R., Srinivasulu, G., Jayasankar, S.: Influence of fiber waviness on the effective properties of discontinuous fiber reinforced composites. Comput. Mater. Sci. 91, 339–349 (2014)

    Article  Google Scholar 

  18. Lemanski, S.L., Sutcliffe, M.P.F.: Compressive failure of finite size unidirectional composite laminates with a region of fibre waviness. Compos. Part A 43, 435–444 (2012)

    Article  Google Scholar 

  19. Trials, D., Costa, J., Fiedler, B., Hobbiebrunken, T., Hurtado, J.E.: A two-scale method for matrix cracking probability in fibre-reinforced composites based on a statistical representative volume element. Compos. Sci. Technol. 66, 1766–1777 (2006)

    Article  Google Scholar 

  20. Blacklock, M., Bale, H., Begley, M., Cox, B.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model. J. Mech. Phys. Solids. 60, 451–470 (2012)

    Article  Google Scholar 

  21. Rinaldi, R.G., Blacklock, M., Bale, H., Begley, M., Cox, B.N.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations. J. Mech. Phys. Solids. 60, 1561–1581 (2012)

    Article  Google Scholar 

  22. Alkhateb, H., Al-Ostaz, A., Alzebdeh, K.I.: Developing a stochastic model to predict the strengthand crack path of random composites. Compos. Part B 40, 7–16 (2009)

    Article  Google Scholar 

  23. Yushanov, S.P., Bogdanovich, A.E.: Analytical probability model of initial failure and reliability of laminated composite structures. Int. J. Solids Struct. 35(7–8), 665–685 (1998)

    Article  Google Scholar 

  24. Vanaerschot, A., Cox, B.N., Lomov, S.V., Vandepitte, D.: Stochastic multi-scale modeling of textile composite based on internal geometry variability. Comput. Struct. 122, 55–64 (2013)

    Article  Google Scholar 

  25. Guilleminot, J., Soize, C., Kondo, D., Binetruy, C.: Theoretical framework and experimental procedure for modeling mesoscopic volume fraction stochastic fluctuations in fiber reinforced composites. Int. J. Solids Struct. 45, 5567–5583 (2008)

    Article  Google Scholar 

  26. Mehre, L., Doostan, A., Moens, D., Vandepitte, D.: Stochastic identification of composite material properties from limited experimental databases, Part II: Uncertainty modeling. Mech. Syst. Signal Process. 27, 484–498 (2012)

    Article  Google Scholar 

  27. Yushanov, S.P., Bogdanovich, A.E.: Stochastic theory of composite materials with random waving of the reinforcements. Int. J. Solids Struct. 35(22), 2901–2930 (1998)

    Article  Google Scholar 

  28. Fang, G.D., Liang, J., Wang, B.L.: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites. Compos. Part A 40, 343–350 (2009)

    Article  Google Scholar 

  29. Chamis, C.C.: Mechanics of composites materials: past, present and future[J]. J. Compos. Technol. Res. 11(1), 3–14 (1989)

    Article  Google Scholar 

  30. Chamis, C.C.: Simplified composite micromechanics equation for strength, fracture toughness, impact resistance and environmental effects[R]. NASA, N84-27832 (1984)

  31. Sun, H.Y., Qiao, X.: Prediction of the mechanical propertites of three-dimensionally braided composites. Compos. Sci. Technol. 57, 623–629 (1997)

    Article  Google Scholar 

  32. Xia, Z.H., Zhou, C.W., Yong, Q.L., Wang, X.W.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. Int. J. Solids Struct. 43(2), 266–278 (2006)

    Article  Google Scholar 

  33. ASTM D3039/D3039M-00, standard test method for tensile properties of polymer matrix composite materials [S], (2000)

  34. Shan, Z.D., Kang, H.R., Zang, Y., Liu, F.: Microscopic Structure model and finite element simulation of mechanical properties of fiber-bar composites reinforced by three dimensional weaving. Acta Mater Compos Sin. 32(1), 138–149 (2015)

    Google Scholar 

  35. Xu, K., Xu, X.W.: Nonlinear numerical analysis of progressive damage of 3D braided composites. Chin J Theor Appl Mech. 39(3), 398–407 (2007)

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China(No.51035003) and the major national S&T program of China( 2014ZX04001-181) are gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huairong Kang, Zhongde Shan or Yong Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Shan, Z., Zang, Y. et al. Effect of Yarn Distortion on the Mechanical Properties of Fiber-Bar Composites Reinforced by Three-Dimensional Weaving. Appl Compos Mater 23, 119–138 (2016). https://doi.org/10.1007/s10443-015-9452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9452-5

Keywords

Navigation