Skip to main content
Log in

Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronaut. 55, 409–420 (2004). doi:10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  3. DiCarlo, J.A., Van Roode, M.: Ceramic composite development for gas turbine hot section components. Proc. ASME Turbo Expo: Power for Land Sea Air 2, 221–231 (2006)

    Google Scholar 

  4. Stephen, T.: General Electric primes CMC for turbine blades. Flight International. (2010). http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/

  5. Zhang, L.T., Cheng, L.F., Luan, X.G., Mei, H., Xu, Y.D.: Environmental performance testing system for thermostructure materials applied in aeroengines. Key Eng. Mater. 313, 183–190 (2006). doi:10.4028/www.scientific.net/KEM.313.183

    Article  Google Scholar 

  6. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall. Mater. 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  Google Scholar 

  7. Holmes, J.W., Cho, C.D.: Experimental observation of frictional heating in fiber-reinforced ceramics. J. Am. Ceram. Soc. 75, 929–938 (1992). doi:10.1111/j.1151-2916.1992.tb04162.x

    Article  Google Scholar 

  8. Reynaud, P.: Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos. Sci. Technol. 56, 809–814 (1996). doi:10.1016/0266-3538(96)00025-5

    Article  Google Scholar 

  9. Fantozzi, G., Reynaud, P.: Mechanical hysteresis in ceramic matrix composites. Mater. Sci. Eng. A 521–522, 18–23 (2009). doi:10.1016/jmsea.2008.09.128

    Article  Google Scholar 

  10. Kotil, T., Holmes, J.W., Comninou, M.: Origin of hysteresis observed during fatigue of ceramic matrix composites. J. Am. Ceram. Soc. 73, 1879–1883 (1990). doi:10.1111/j.1151-2916.1990.tb05239.x

    Article  Google Scholar 

  11. Pryce, A.W., Smith, P.A.: Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta Metall. Mater. 41, 1269–1281 (1993). doi:10.1016/0956-7151(93)90178-U

    Article  Google Scholar 

  12. Ahn, B.K., Curtin, W.A.: Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. J. Mech. Phys. Solids 45, 177–209 (1997)

    Article  Google Scholar 

  13. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic matrix composites. Compos. Sci. Technol. 54, 55–66 (1995). doi:10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  14. Solti, J.P., Mall, S., Robertson, D.D.: Modeling of fatigue in cross-ply ceramic matrix composites. J. Compos. Mater. 31, 1921–1943 (1997). doi:10.1177/002199839703101903

    Article  Google Scholar 

  15. Vagaggini, E., Domergue, J.M., Evans, A.G.: Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, theory. J. Am. Ceram. Soc. 78, 2709–2720 (1995). doi:10.1111/j.1151-2916.1995.tb08046.x

    Article  Google Scholar 

  16. Hutchison, J.W., Jensen, H.M.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9, 139–163 (1990). doi:10.1016/0167-6636(90)90037-G

    Article  Google Scholar 

  17. Li, L.B., Song, Y.D., Sun, Z.G.: Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chin. J. Solid. Mech. 30, 8–14 (2009)

    Google Scholar 

  18. Li, L.B., Song, Y.D., Sun, Z.G.: Effect of fiber poisson contraction on fatigue hysteresis loops of ceramic matrix composites. J. Nanjing Univ. Aeronaut. Astronaut. 41, 181–186 (2009)

    Google Scholar 

  19. Li, L.B., Song, Y.D.: Effect of fiber failure on quasi-static unloading/reloading hysteresis loops of ceramic matrix composites. Trans. Nanjing Univ. Aeronaut. Astronaut. 28, 94–102 (2011)

    Google Scholar 

  20. Li, L.B.: Modeling fatigue hysteresis behavior of unidirectional C/SiC ceramic-matrix composite. Compos. Part B Eng. 66, 466–474 (2014). doi:10.1016/j.compositesb.2014.06.014

    Article  Google Scholar 

  21. Li, L.B.: Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites. Compos. Part B Eng. 53, 36–45 (2013). doi:10.1016/j.compositesb.2013.04.029

    Article  Google Scholar 

  22. Li, L.B.: Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater. Sci. Eng. A 586, 160–170 (2013). doi:10.1016/j.msea.2013.08.017

    Article  Google Scholar 

  23. Li, L.B., Song, Y.D.: An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 17, 309–328 (2010). doi:10.1007/s10443-009-9122-6

    Article  Google Scholar 

  24. Li, L.B., Song, Y.D., Sun, Y.C.: Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 20, 693–707 (2012). doi:10.1007/s10443-012-9297-0

    Google Scholar 

  25. Li, L.B.: Estimate interface shear stress of woven ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 20, 993–1005 (2013). doi:10.1007/s10443-013-9314-y

    Article  Google Scholar 

  26. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 34, 167–189 (1986). doi:10.1016/0022-5096(86)90035-9

Download references

Acknowledgements

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible. The author would also thank Prof. Pwter W.R. Beaumont for his valuable comments on an earlier version of the paper.

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels. Appl Compos Mater 22, 945–959 (2015). https://doi.org/10.1007/s10443-015-9444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9444-5

Keywords

Navigation