Skip to main content
Log in

Objective Surface Evaluation of Fiber Reinforced Polymer Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palardy, G., Hubert, P., Haider, M., Lessard, L.: Optimization of RTM processing parameters for Class A surface finish. Compos. B Eng. 39(7–8), 1280–1286 (2008). doi:10.1016/j.compositesb.2007.12.003

    Article  Google Scholar 

  2. Wood, K.: Taking subjectivity out of class A surface evaluation. Compos. Tech. 14(4), 67–70 (2008)

    Google Scholar 

  3. Das, P.D., Ravine, J., Pung, C.P., Vaidya, U.: Enhancing the Surface Finish of LFT Compression Molded Parts via Application of Surface Film. Paper presented at the Composites & Polycon 2007, Tampa, FL, 17–19 October

  4. Schubel, P.J., Warrior, N.A., Kendall, K.N., Rudd, C.D.: Characterisation of thermoset laminates for cosmetic automotive applications: Part I - Surface characterisation. Compos. Appl. Sci. Manuf. 37(10), 1734–1746 (2006). doi:10.1016/j.compositesa.2005.09.013

    Article  Google Scholar 

  5. Hu, S., Hoa, S.V., Ganesan, R.: A new evaluation method for surface finish of composite automotive panels using waveform analysis. J. Compos. Mater. 43(8), 843–875 (2009). doi:10.1177/0021998309102038

    Article  CAS  Google Scholar 

  6. Podsiadlo, P., Stachowiak, G.: Multi-scale representation of tribological surfaces. Proc IME J J Eng Tribol 216(6), 463–479 (2002)

    Article  Google Scholar 

  7. Goa, Y., Lu, S., Tse, S., O, K.: A wavelet–fractal-based approach for composite characterisation of engineering surfaces. Int. J. Adv. Manuf. Tech. 20(12), 925–930 (2002)

    Google Scholar 

  8. Landini, G.: Fractals in microscopy. J. Microsc. 241(1), 1–8 (2011). doi:10.1111/j.1365-2818.2010.03454.x

    Article  CAS  Google Scholar 

  9. Pal, S., Ghatak, S.K., De, S., DasGupta, S.: Evaluation of surface roughness of a plasma treated polymeric membrane by wavelet analysis and quantification of its enhanced performance. Appl. Surf. Sci. 255(5, Part 1), 2504–2511 (2008)

    Article  CAS  Google Scholar 

  10. Bharati, M.H., MacGregor, J.F.: Image texture analysis: Methods and comparisons. Chemometr. Intell. Lab. Syst. 72(1), 57–71 (2004)

    Article  CAS  Google Scholar 

  11. Chang, S.I., Ravathur, J.S.: Computer vision based non-contact surface roughness assessment using wavelet transform and response surface methodology. Qual. Eng. 17(3), 435–451 (2005)

    Article  Google Scholar 

  12. Gerasimov, V.V., Khandetsky, V.S., Gnoevoy, S.N.: Research of probability characteristics in defect detection of composite materials using wavelet transform. Paper presented at the 8th International Conference of the Slovenian Society for Non-Destructive Testing, Portorož, Slovenia

  13. Sarathi, R., Sahu, R.K., Tanaka, T.: Understanding the hydrophobic characteristics of epoxy nanocomposites using wavelets and fractal technique. IEEE Trans. Dielectr. Electr. Insul. 15(1), 178–186 (2008)

    Article  CAS  Google Scholar 

  14. Loutas, T.H., Kostopoulos, V.: Health monitoring of carbon/carbon, woven reinforced composites: Damage assessment by using advanced signal processing techniques. Part II: Acousto–ultrasonics monitoring of damage development. Compos. Sci. Technol. 69(2), 273–283 (2009). doi:10.1016/j.compscitech.2008.09.042

    Article  CAS  Google Scholar 

  15. Bussiba, A., Kupiec, M., Ifergane, S., Piat, R., Böhlke, T.: Damage evolution and fracture events sequence in various composites by acoustic emission technique. Compos. Sci. Technol. 68(5), 1144–1155 (2008). doi:10.1016/j.compscitech.2007.08.032

    CAS  Google Scholar 

  16. Hu, N., Shimomukai, T., Yan, C., Fukunaga, H.: Identification of delamination position in cross-ply laminated composite beams using S0 Lamb mode. Compos. Sci. Technol. 68(6), 1548–1554 (2008). doi:10.1016/j.compscitech.2007.10.015

    Article  CAS  Google Scholar 

  17. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res. 20(10), 847–856 (1980)

    Article  CAS  Google Scholar 

  18. Lindblad, T., Kinser, J.M.: Inherent features of wavelets and pulse coupled networks. IEEE Trans. Neural Netw. 10(3), 607–614 (1999)

    Article  CAS  Google Scholar 

  19. Palmer, S., Hall, W.: Surface evaluation of carbon fibre composites using wavelet texture analysis. Compos. B Eng. 43(2), 621–626 (2012). doi:10.1016/j.compositesb.2011.08.024

    Article  CAS  Google Scholar 

  20. Roberts, M.: Carbon composite process provides superb surface finish. Reinforc. Plast. 54(2), 29–32 (2010). doi:10.1016/s0034-3617(10)70062-x

    Article  Google Scholar 

  21. The MathWorks Inc.: Matlab Version 7.11.0.584 (R2010b). In. The MathWorks Inc., (2010)

  22. The MathWorks Inc.: Matlab Wavelet Toolbox Version 4.6. In. The MathWorks Inc., (2010)

  23. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, San Diego (1998)

    Google Scholar 

  24. Hubbard, B.B.: The World According to Wavelets. A K Peters, Ltd., Wellesley, MA (1996)

    Google Scholar 

  25. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  26. Czarkowski, D., Domijan, A.: Wavelet analysis of electric adjustable speed drive waveforms. American Society of Heating, Refrigeration and Air Conditioning Engineers Transactions 104(1A), 559–569 (1998)

    Google Scholar 

  27. Johnson, D.E.: Applied multivariate methods for data analysts. Duxbury Press, Pacific Grove, California (1998)

    Google Scholar 

  28. Krzanowski, W.J.: Principles of Multivariate Analysis: A User's Perspective. Clarendon, Oxford (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S., Hall, W. Objective Surface Evaluation of Fiber Reinforced Polymer Composites. Appl Compos Mater 20, 627–637 (2013). https://doi.org/10.1007/s10443-012-9291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9291-6

Keywords

Navigation