Skip to main content
Log in

Thermomechanical Analysis of Shape-Memory Composite Tape Spring

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605–1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee, A.P., Fitch, J.P.: Micro devices using shape memory polymer patches for mated connections. United States Patent 6,086,599 (2000)

  2. Gall, K., Kreiner, P., Turner, D., et al.: Shape-memory polymers for microelectromechanical systems. J. Microelectromech 13(3), 472–483 (2004)

    Article  Google Scholar 

  3. Lendlein, A., Langer, R.: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    Article  Google Scholar 

  4. Metzger, M.F., Wilson, T.S., Schumann, D.: Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed. Microdevices 4(2), 89–96 (2002)

    Article  Google Scholar 

  5. Tupper, M., Gall, K., Mikulas, M., et al.: Developments in elastic memory composite materials for spacecraft deployable structures. IEEE 5, 2541–2547 (2001)

    Google Scholar 

  6. Mark, S.L., Hazelton, C.S.: Development of coilable longerons using elastic memory composite material. AIAA Paper No. 2002–1453 (2002)

  7. Campbell, D., Lake, M.S., Scherbarth, M.R.: Elastic memory composite materials: an enabling technology for future furable space structures. 46th Structural Dynamics, and Materials Conference, Austin, Texas (2005)

  8. Tobushi, H., Hara, H., Yamada, E., et al.: Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater. Struct. 5, 483–491 (1996)

    Article  CAS  Google Scholar 

  9. Tobushi, H., Okumura, K., Hashimoto, T.: Thermomechanical constitutive model of shape memory polymer. Mech. Mater. 33, 545–554 (2001)

    Article  Google Scholar 

  10. Abrahamson, E.R., Lake, M.S., Munshi, N.A., et al.: Shape memory mechanics of an elastic memory composite. J. Intell. Mater. Syst. Struct. 14, 623–632 (2003)

    Article  CAS  Google Scholar 

  11. Liu, Y.P., Gall, K., Dunn, M.L., et al.: Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006)

    Article  CAS  Google Scholar 

  12. Kafka, V.: Shape memory polymers: a mesoscale model of the internal mechanism leading to the SM phenomena. Int. J. Plast. 24, 1533–1548 (2008)

    Article  CAS  Google Scholar 

  13. Chen, Y.C., Lagoudas, D.C.: Constitutive theory for shape memory polymers. Part I Large deformations. J. Mech. Phys. Solids 56, 1752–1765 (2008)

    Article  CAS  Google Scholar 

  14. Wang, Z.D., Li, Z.F., Xiong, Z.Y., et al.: Thermomechanical constitutive equations of shape memory polymers. J. Appl. Polym. Sci. 113(1), 651–656 (2009)

    Article  CAS  Google Scholar 

  15. Wang, Z.D., Li, Z.F., Xiong, Z.Y.: Viscoelastic characteristics of shape memory polymers. J. Appl. Polym. Sci. 118, 1406–1413 (2010)

    CAS  Google Scholar 

  16. Srivastava, V., Chester, S.A., Anand, L.: Thermally actuated shape-memory polymers: experiments, theory, and numerical simulations. J. Mech. Phys. Solids 58, 1100–1124 (2010)

    Article  CAS  Google Scholar 

  17. Zhang, Q., Yang, Q.S.: Recent advance on constitutive models of thermal-sensitive shape memory polymers. Appl. Polym. Sci. 123(3), 1502–1508 (2012)

    Article  CAS  Google Scholar 

  18. Bellin, I., Kelch, I.S., Langer, R., et al.: Polymeric triple-shape materials. Proc. Natl. Acad. Sci. 103, 18043–18047 (2006)

    Article  CAS  Google Scholar 

  19. Xie, T., Xiao, X., Cheng, Y.: Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823–1827 (2009)

    Article  CAS  Google Scholar 

  20. Mather, P.T.: A functionally graded shape memory polymers. Soft Matter 7, 68–74 (2011)

    Article  Google Scholar 

  21. Liang, C., Rogers, C.A., Malafeew, E.: Investigation of shape memory polymers and their hybrid composites. J. Intell. Mater. Syst. Struct. 8, 380–386 (1997)

    Article  CAS  Google Scholar 

  22. Ni, Q.Q., Ohsako, N., Ohki, T et al.: Development of smart composites based on shape memory polymer. International Symposium on Smart Structures and Microsystems, Hong Kong (2000)

  23. Gall, K., Dunn, M.L., Liu, Y., et al.: Shape memory polymer nanocomposites. Acta Mater. 5, 5115–5126 (2002)

    Article  Google Scholar 

  24. Francis, W.H., Lake, M.S et al.: Elastic memory composite microbuckling mechanics: closed-form model with empirical correlation. Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 (2007)

  25. Xiong, Z.Y., Wang, Z.D., Li, Z.F., et al.: Micromechanism of deformation in EMC laminates. Mater. Sci. Eng., A 496, 323–328 (2008)

    Article  Google Scholar 

  26. Wang, Z.D., Li, Z.F., Wang, Y.S.: Micro-buckling solution of elastic memory laminates under bending. J. Intell. Mater. Syst. Struct. 20, 1565–1572 (2009)

    Article  Google Scholar 

  27. Wang, Z.D., Li, Z.F., Xiong, Z.Y., et al.: Theoretical studies on the microbuckling mode of elastic memory composites. Acta Mech. Solida Sin. 31(1), 20–28 (2010)

    Google Scholar 

  28. Lake, M.S., Munshi, N.A., Tupper, M.L.: Application of elastic memory composite materials to deployable space structures. AIAA Journal Paper No. 2001–4602 (2001)

  29. Wang, Z.D., Li, Z.F.: Theoretical analysis of the deformation of SMP sandwich beam in flexure. Arch. Appl. Mech. 81(11), 1667–1678 (2011)

    Article  Google Scholar 

  30. Li, Z.F., Wang, Z.D.: Studies on the shape frozen/recovery behaviors of SMP-based sandwich structure. J. Intell. Mater. Syst. Struct. 22(14), 1605–1612 (2011)

    Article  Google Scholar 

  31. Wüst, W.: Einige anwendungen der theorie der zylinderschale. Z. Angew. Math. Mech. 34, 444–454 (1954)

    Article  Google Scholar 

  32. Rimrott, F.P.J.: Querschnittsverformung bei torsion offnerer profile. Z. Angew. Math. Mech. 50, 775–778 (1970)

    Article  Google Scholar 

  33. Seffen, K.A.: Deployment of a rigid panel by tape-springs. Ph.D. Thesis, University of Cambridge (1997)

  34. Seffen, K.A.: On the behavior of folded tape-springs. J. Appl. Mech. 68, 369–375 (2001)

    Article  Google Scholar 

  35. Walker, S.J.I., Aglietti, G.S.: Experimental investigation of tape springs folded in three dimensions. AIAA J. 44(1), 151–159 (2006)

    Article  Google Scholar 

  36. Calladine, C.R.: Theory of shell structures. Cambridge University Press Calladine, CR (1983)

Download references

Acknowledgements

This work was funded by Natural Science Foundations of China (no 11072027) and Ministry of Science and Technology (2009BAK58B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Wang, L.Y. Thermomechanical Analysis of Shape-Memory Composite Tape Spring. Appl Compos Mater 20, 287–301 (2013). https://doi.org/10.1007/s10443-012-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9271-x

Keywords

Navigation