Skip to main content
Log in

A Method for Cure Process Design of Thick Composite Components Manufactured by Closed Die Technology

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

During the manufacture of polymer-matrix composite components the cure degree must be uniform to have a good quality of the product. For thick composite components this condition is not often respected in fact the cure degree trend between the core and the external surface is different causing structural and geometrical/dimensional unconformities. In most cases, these problems are caused by a wrong design of cure process in terms of thermal cycle and tooling, therefore the cure cycle must be designed and optimized. The optimization of cure thermal cycle should include several performance criteria for the production system such as the targeted cure degree, the targeted maximum temperature of the part and the duration of the cure cycle as well as the production system limitations such as the maximum allowable heating rate, the maximum allowable cooling rate etc. This work aims to define by thermochemical phenomena a first step toward the definition of a method to optimize the cure degree of a thick composite components by focusing particular attention to the aspects of thermal degradations and residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pantelelis, N.G.: Optimized Cure Cycles for Resin Transfer Moulding. Compos. Sci. Technol. 63, 249–264 (2003). Elsevier

    Article  CAS  Google Scholar 

  2. Antonucci, V., Giordano, M., Hsiao, K.-T., Advani, S.G.: A methodology to reduce thermal gradients due to the exothermic reactions in composites processing. Int. J. Heat Mass Transfer 45(8), 1675–1684 (2002)

    Article  CAS  Google Scholar 

  3. Radford, D.W.: Cure shrinkage-induced warpage in flat uniaxial composites. J. Compos. Technol. Res. 15, 290–296 (1993)

    Article  CAS  Google Scholar 

  4. Mazumdar, S.K.: Composites manufacturing: Materials, product, and process engineering. CRC Press (2002)

  5. Slusar, B., Flek, M., Rubtsov, Y., Shevtsov, S., Fomin, A.: Mould heating distribution control system simulation for polymerization of a composite spar for helicopter main rotor blade. Proceedings of the Comsol Multiphysics User’s Conference, Stockholm (2005).

  6. Morrison, C.E., Bader, M.G.: Computer modelling of resin flow during laminate cure. Composites 20(1), 9–13 (1989)

    Article  CAS  Google Scholar 

  7. Young, W.-B.: Compacting pressure and cure cycle for processing of thick composite laminates. Compos. Sci. Technol. 54, 299–306 (1995)

    Article  CAS  Google Scholar 

  8. Yan, X.: Finite element modeling of consolidation of composite laminates. Acta Mech. Sin. 22, 62–67 (2006). Springer-Verlag

    Article  Google Scholar 

  9. Teplinsky, S., Gutman, E.M.: Computer simulation of process induced stress and strain during cure of thick-section thermosetting composites. Comput. Mater. Sci. 6, 71–76 (1996)

    Article  CAS  Google Scholar 

  10. Li, C., Potter, K.D., Wisnom, M.R., Stringer, L.G.: In situ measurement of chemical shrinkage of my750 epoxy resin by a novel gravimetric method. Compos. Sci. Technol. 64, 55–64 (2004)

    Article  CAS  Google Scholar 

  11. Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15, 175–194 (1981)

    Article  Google Scholar 

  12. Nelson, R.H., Cairns, D.S.: Prediction of dimensional changes in composite laminates during cure. 34th International SAMPE Symposium, 2397–2410, May (1989)

  13. Bogetti, T.A., Gillespie, J.W.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26, 626–660 (1992)

    Article  CAS  Google Scholar 

  14. Svanberg, J.M., Holmberg, J.A.: Prediction of shape distortion Part II: experimental validation and analysis of boundary conditions. Compos. Part A Appl. Sci. Manuf. 35, 724–725 (2004)

    Article  Google Scholar 

  15. Ruiz, E., Trochu, F.: Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf. 36, 806–826 (2005). Elsevier

    Article  Google Scholar 

  16. Ruiz, E., Trochu, F.: Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos. Part A Appl. Sci. Manuf. 37, 913–924 (2006)

    Article  Google Scholar 

  17. Wisnom, M.R., Gigliotti, M., Ersoy, N., Campbell, M., Potter, K.D.: Mechanisms Generating Residual Stresses and Distortion During Manufacture of Polymer–Matrix Composite Structures. Compos. Part A Appl. Sci. Manuf. 37(4), 522–529 (2006)

    Article  Google Scholar 

  18. Sorrentino, L., Bellini, C., Carrino, L., Leone, A., Mostarda, E., Tersigni, L.: Cure process design to manufacture composite components with variable thickness by a closed die technology, ICCM17, 17th International Conference on Composite Materials, pp. 27–31. Edinburgh, UK, July (2009).

  19. Hsiao, K.-T., Little, R., Restrepo, O., Minaie, B.: A study of direct cure kinetics characterization during liquid composite molding. Compos. Part A Appl. Sci. Manuf. 37, 925–993 (2006)

    Article  Google Scholar 

  20. Blest, D.C., Duffy, B.R., McKee, S., Zulkifle, A.K.: Curing simulation of thermoset composites. Compos. Part A Appl. Sci. Manuf. 30, 1289–1309 (1999)

    Article  Google Scholar 

  21. Svanberg, J.M., Holmberg, J.A.: Prediction of shape distortion Part I, FE-Implementation of a path dependent constitutive model. Compos. Part A Appl. Sci. Manuf. 35, 711–721 (2004)

    Article  Google Scholar 

  22. Park, H.C., Goo, N.S., Min, K.J., Yoon, K.J.: Three-dimensional cure simulation of composite structures by finite element method. Compos. Struct. 62, 51–57 (2003)

    Article  Google Scholar 

  23. Costa, V.A.F., Sousa, A.C.M.: Modeling of flow and thermo-kinetics during the cure of thick laminated composites. Int. J. Therm. Sci. 42, 15–22 (2003)

    Article  CAS  Google Scholar 

  24. Valliappan, M., Roux, J.A., Vaughan, J.G., Arafat, E.S.: Die and post-die temperature and cure in graphite/epoxy composites. Compos. Part B Eng. 27B, 1–9 (1996)

    Article  CAS  Google Scholar 

  25. Olofsson, K.S.: Temperature predictions in thick composite laminates at low cure temperatures. Appl. Compos. Mater. 4, 1–11 (1997)

    CAS  Google Scholar 

  26. Joshi, S.C., Lam, Y.C.: Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation. J. Mater. Process. Technol. 174, 178–182 (2006)

    Article  CAS  Google Scholar 

  27. Shin, D.D., Hanh, H.T.: A consistent cure kinetic model for AS4/2502 graphite/epoxy. Compos. Part A Appl. Sci. Manuf. 31, 991–999 (2000)

    Article  Google Scholar 

  28. Guo, Z.S., Du, S., Zhang, B.: Temperature field of thick thermoset composite laminates during cure process. Compos. Sci. Technol. 65, 517–523 (2005)

    Article  CAS  Google Scholar 

  29. Yi, S., Hilton, H.H., Ahmad, M.F.: A finite element approach for cure simulation of thermosetting matrix composites. Comput. Struct. 64, 383–388 (1997)

    Article  Google Scholar 

  30. Huang, X., Gillespie, J.W., Bogetti, T.: Process induced stress for woven fabric thick section composite structures. Compos. Struct. 49, 303–312 (2000)

    Article  Google Scholar 

  31. Ersoy, N., Potter, K., Wisnom, M.R., Clegg, M.J.: An experimental method to study the frictional process during composites manufacturing. Compos. Part A Appl. Sci. Manuf. 36, 1536–1544 (2005)

    Article  Google Scholar 

  32. Nielsen, L.E.: The thermal and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fundam. 13, 17–20 (1974)

    Article  CAS  Google Scholar 

  33. Dufour, P., Michaud, D.J., Touré, Y., Dhurjati, P.S.: A partial differential equation model predictive control strategy: application to autoclave composite processing. Comput. Chem. Eng. 28, 545–556 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the funding of the Italian M.I.U.R. (Ministry of Instruction, University and Technological Research). Special thanks to Tiziana, Martina and Lorenzo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Sorrentino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrentino, L., Tersigni, L. A Method for Cure Process Design of Thick Composite Components Manufactured by Closed Die Technology. Appl Compos Mater 19, 31–45 (2012). https://doi.org/10.1007/s10443-010-9179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9179-2

Keywords

Navigation