Skip to main content
Log in

Consolidation and Warpage Deformation Finite Element Analysis of Filament Wound Tubes

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents a process model for simulating the manufacturing process of prepreg filament wound composite tubes developed based on the finite element analysis. The model relates the process variables, such as degree of cure, viscosity, material property and temperature etc., to the parameters characterizing (residual stresses, warpage deformation) the composite tube and the mandrel. From the simulating results, several important trends in both the data and model are observed (1) Low temperature will go with low reaction rate and the reaction starts under low temperature will later compared with high temperature; (2) The results using CHILE model after demolding will smaller than the one using linear elasticity which assumes a stress-free prior to cool-down. After the mandrel (mold) is removed, some residual stresses, especially hoop stress will be released. (3) Remarkable stress concentration appeared in the transition zone between the boss and cylinder. In order to prevent the structural failure due to interlaminar shear or delamination, both the outer surface of the cylinder and the inner of the boss should have the same ply orientation angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao, L.Y., Mantell, S.C., Cohen, D., et al.: Finite element modeling of the filament winding process. Compos. Struct. 52, 499–510 (2001)

    Article  Google Scholar 

  2. Lee, S.Y., Springer, G.S.: Filament winding cylinders: I process model. J. Compos. Mater. 24, 1270–1298 (1990)

    Article  CAS  Google Scholar 

  3. Calius, E.P., Lee, S.Y., Springer, G.S.: Filament winding cylinders: II. Validation of the process model. J. Compos. Mater. 24, 1299–1343 (1990)

    Article  CAS  Google Scholar 

  4. Lee, S.Y., Springer, G.S.: Filament winding cylinders: III. Selection of the process variables. J. Compos. Mater. 24, 1344–1366 (1990)

    Article  CAS  Google Scholar 

  5. Calius, E.P., Springer, G.S.: A model of filament wound thin cylinders. Int. J. Solids Struct. 26(3), 271–297 (1990)

    Article  Google Scholar 

  6. Banerjee, A., Sun, L., Mantell, S.C., Cohen, D.: Model and experimental study of fiber motion in wet filament winding. Compos. Part A Appl. Sci. Manuf. 29, 251–263 (1998)

    Article  Google Scholar 

  7. Cohen, D., Mantell, S.C., Zhao, L.Y.: The effect of fiber volume fraction on filament wound composite pressure vessel strength. Compos Part B Eng 32, 413–429 (2001)

    Article  Google Scholar 

  8. Cai, Z., Gutowski, T., Allen, S.: Winding and consolidation analysis for cylindrical composite structures. J. Compos. Mater. 26, 1374–1399 (1992)

    Article  CAS  Google Scholar 

  9. Kokan D, Gramoll K.: Development of a viscoelastic filament-winding process model. AIAA/ASME/ASCE/AHS/ASC, 37th, Structures, Structural Dynamics, and Material Conference and Exhibit, Salt Lake City,UT. p.1781–1787 (1996)

  10. Gray DL, Moser DJ.: Finite element analysis of a composite overwrapped pressure vessel. AIAA/ASME/SAE/ASEE, 40th, Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida. p.1–15 (2004)

  11. Kokan D, Gramoll K.: Design and manufacture of composite cylinders. AIAA-94-1431-CP. p.1013–1023 (1994)

  12. Meink, T.E., Huybrechts, S., Shen, M.H.H.: Processing induced warpage of filament wound composite cylindrical shells. J. Compos. Mater. 36, 1025–1047 (2002)

    Article  Google Scholar 

  13. Seber G, Baker ML, et al.: A process for shape optization of filament wound pressure vessels. AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 11th, Portsmouth, Virginia. p.1–14 (2006)

  14. Li J, Yao XF, Liu YH, Cen ZZ, Kou ZJ, Dai D.: A study of the integrated composite material structures under different fabrication procressing. Compos. Part A Appl. Sci. Manuf. 49, 455–462 (2009)

  15. Costa, V.A.F., Sousa, A.C.M.: Modeling of flow and thermo-kinetics during the cure of thick laminated composites. Int. J. Therm. Sci. 42, 15–22 (2003)

    Article  CAS  Google Scholar 

  16. Bogetti, T.A., Gillespie, J.W.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26(5), 626–660 (1992)

    Article  CAS  Google Scholar 

  17. Fernlund, G., Rahman, N., Courdji, R., et al.: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. Part A Appl. Sci. Manuf. 33, 341–351 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Dong, C. & Chen, S. Consolidation and Warpage Deformation Finite Element Analysis of Filament Wound Tubes. Appl Compos Mater 16, 307–320 (2009). https://doi.org/10.1007/s10443-009-9096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9096-4

Keywords

Navigation