Skip to main content
Log in

Thermal Residual Stress Distribution in Carbon Fiber/Novel Thermal Plastic Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Thermal residual stress is one of the major factors affecting composite mechanical performance. In this paper, a 3-D FEA technique was utilized to analyze the thermal residual stress distribution in Carbon fiber/PPESK composite. Parabolic failure criterion was used to predict composite potential failure zone. Results indicate that, thermal residual stress distributions in different parts of the composite are different. At composite free end zone, the maximum thermal residual stress is located at fiber surface; in composite inner zone, the maximum stress is located in the matrix; at composite defect zone, stress concentration is located at defect surface. Thermal residual stress at composite free end zone will lead to fiber–matrix interfacial de-bonding. Thermal residual stress concentration at composite defect zone will decrease composite mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Diaz, J., Rubio, L.: Developments to manufacture structural aeronautical parts in carbon fiber reinforced thermoplastic materials. J. Mater. Process. Technol. 143–144, 342–346 (2003). doi:10.1016/S0924-0136(03)00450-3

    Article  Google Scholar 

  2. Dubé, M., Hubert, P., Yousefpour, A., et al.: Resistance welding of thermoplastic composites skin/stringer joints. Compos. Part A 38, 2541–2552 (2007). doi:10.1016/j.compositesa.2007.07.014

    Article  Google Scholar 

  3. Rosso, P., Varadi, K.: FE macro/micro analysis of thermal residual stresses and failure behavior under transverse tensile load of VE/CF–fiber bundle composites. Compos. Sci. Technol. 66, 3241–3253 (2006). doi:10.1016/j.compscitech.2005.07.004

    Article  CAS  Google Scholar 

  4. Fiedler, B., Hojo, M., Ochiai, S.: The influence of thermal residual stresses on the transverse strength of CFRP using FEM. Compos. Part A 33, 1323–1326 (2002). doi:10.1016/S1359-835X(02)00169-0

    Article  Google Scholar 

  5. Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ochi, M.: Finite-element modeling of initial matrix failure in CFRP under static transverse tensile load. Compos. Sci. Technol. 61, 95–105 (2001). doi:10.1016/S0266-3538(00)00198-6

    Article  CAS  Google Scholar 

  6. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature—Part I: Formation of residual stresses. Compos. Part A 37, 1847–1857 (2006). doi:10.1016/j.compositesa.2005.12.025

    Article  Google Scholar 

  7. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature—Part II: Experimental techniques. Compos. Part A 38, 651–665 (2007)

    Article  Google Scholar 

  8. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature. Part III: Effects of thermal residual stresses. Compos. Part A 38, 1581–1596 (2007). doi:10.1016/j.compositesa.2006.12.005

    Article  Google Scholar 

  9. Abedian, A., Szyszkowski, W.: Influence of the free surface on the thermal residual stresses in unidirectional composites. Compos. Part A 28, 573–579 (1997)

    Article  Google Scholar 

  10. Nickerson, S., Mayes, J.S., Welsh, J.S.: Multi-continuum analysis of thermally induced matrix cracking. Eng. Fract. Mech. 72(12), 1993–2008 (2005)

    Article  Google Scholar 

  11. Fiedler, B., Schulte, K.: Photo-elastic analysis of fibre-reinforced model composite materials. Compos. Sci. Technol. 57(8), 859–867 (1997)

    Article  CAS  Google Scholar 

  12. Lu, C., Chen, P., Yu, Q., et al.: Interfacial adhesion of plasma treated carbon fiber/Poly (phthalazinone ether sulfone ketone) composite. J. Appl. Polym. Sci. 106, 1733–1741 (2007)

    Article  CAS  Google Scholar 

  13. Chen, P., Lu, C., Yu, Q.: Influence of fiber wettability on the interfacial adhesion of continuous fiber reinforced PPESK composite. J. Appl. Polym. Sci. 102, 2544–2551 (2006)

    Article  CAS  Google Scholar 

  14. Zhao, Q.: Advanced composite manual. Mechanical Industry Press, Beijing (2008)

    Google Scholar 

  15. http://www.cnpnm.com/

  16. Tsai, J.L., Chi, Y.K.: Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays. Compos. Part B 39, 714–721 (2008)

    Article  Google Scholar 

  17. Tschoegl, N.W.: Failure surfaces in principal stress spaces. J. Polymer Sci. Part C Polym. symp. 32, 239–267 (1971)

    Google Scholar 

  18. Theocaris, P.S., Philippidis, T.P.: The paraboloidal failure surface of initially anisotropic elastic solids. J. Reinf. Plast. Compos. 6, 378–395 (1987)

    Article  Google Scholar 

  19. Gourichon, B., Binetruy, C., Krawczak, P.: A new numerical procedure to predict dynamic void content in liquid composite molding. Compos. Part A 37(11), 1961–1969 (2006)

    Article  Google Scholar 

  20. Ruiz, E., Achim, V., Soukane, S., et al.: Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos. Sci. Technol. 66(3–4), 475–486 (2006)

    Article  CAS  Google Scholar 

  21. Hu, J.L., Liu, Y., Shao, X.M.: Study on void formation in multi-layer woven fabrics. Compos. Part A 35(5), 595–603 (2004)

    Article  Google Scholar 

  22. Turner, D.Z., Hjelmstad, K.D., LaFave, J.M.: Three-dimensional flow visualization experiment of an RTM injection for a GFRP cuff mold. Compos Struct 76(4), 352–361 (2006)

    Article  Google Scholar 

  23. Kang, M.K., Lee, W.I.H., Hahn, T.: Formation of microvoids during resin-transfer molding process. Compos. Part A 60(12–13), 2427–2434 (2000)

    CAS  Google Scholar 

  24. Varna, J., Joffe, R., Berglund, L.A., et al.: Effect of voids on failure mechanisms in RTM laminates. Compos. Sci. Technol. 53(2), 241–249 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This experiment is supported by National Defense 11th 5 year program Foundational Research Program (No. A352060215), Program for Liaoning Excellent Talents in University (No. 2005RC-14). The author would like to acknowledge the valuable help given by the organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Chen, P., Yu, Q. et al. Thermal Residual Stress Distribution in Carbon Fiber/Novel Thermal Plastic Composite. Appl Compos Mater 15, 157–169 (2008). https://doi.org/10.1007/s10443-008-9064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-008-9064-4

Keywords

Navigation