Skip to main content
Log in

Mathematical Modeling of Intrusive Growth of Fusiform Initials in Relation to Radial Growth and Expanding Cambial Circumference in Pinus sylvestris L.

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This study on the cambium of Pinus sylvestris L. examines the intrusive growth of fusiform cambial initials and its possible contribution to the tangential and radial expansions of the cambial cylinder. The location and extent of intrusive growth of the fusiform initials were determined by microscopic observations and by mathematical modeling. In order to meet the required circumferential expansion of the cambial cylinder, the fusiform initials grow in groups by means of a symplastic rather than intrusive growth, leaving no room for the assumption that intrusive growth of the initials takes place between radial walls and has a direct role in the increase of the cambial circumference. Therefore, it is postulated that the fusiform initials grow intrusively between the tangential walls of the neighboring initials and their immediate derivatives and not between the radial walls of the adjacent initials as per common belief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

N r :

Number of periclinal divisions

L :

Circumference of cambial cylinder

ΔL :

Increase in circumference of cambial cylinder

r :

Radius of cambial cylinder

Δr :

Increase in the cambial radius

l r :

Radial width of the fusiform initial

l c :

Tangential width of the fusiform initial

Δl r :

Increase in radial width of the fusiform initial

Δl c :

Increase in tangential width of the fusiform initial

u r :

Radial displacement of the initial cell

du r :

Changes in radial displacement

dr :

Radial width of the intrusively growing cell

dl :

Tangential width of the intrusively growing cell

ε r :

Strain in radial direction

ε l :

Strain in tangential direction

T :

Time span between two successive periclinal divisions

Δt :

Progress of time between two successive periclinal divisions

a :

Factor covering the phases of advancement towards a periclinal division and ranging in value from zero to one

t 0 − t 9 :

Ten consecutive time intervals during the growth of a fusiform initial

References

  • Ajmal S, Iqbal M (1987a) Seasonal rhythms of structure and behavior of vascular cambium in Ficus rumphii. Ann Bot (Lond) 60:949–956

    Google Scholar 

  • Ajmal S, Iqbal M (1987b) Annual rhythm of cambial activity in Streblus asper. IAWA Bull (n. s) 8:275–283

    Google Scholar 

  • Bailey IW (1923) The cambium and its derivative tissues IV. The increase in girth of the cambium. Am J Bot 10:499–509. doi:10.2307/2446389

    Article  Google Scholar 

  • Bannan MW, Bayley IL (1956) Cell size and survival in conifer cambium. Can J Bot 34:769–776. doi:10.1139/b56-058

    Article  Google Scholar 

  • Barlow PW, Brain P, Powers SJ (2002) Estimation of directional division frequencies of vascular cambium and in marginal meristematic cells of plants. Cell Prolif 35:49–68. doi:10.1046/j.1365-2184.2002.00225.x

    Article  Google Scholar 

  • Butterfield BG (1972) Developmental changes in the vascular cambium of Aschynomene hispida Willd. N Z J Bot 10:373–386

    Google Scholar 

  • Catesson AM (1964) Origine, fonctionnement et variations cytologiques saisonnieres du cambium de l’Acer pseudoplatanus L. (Aceracees). Ann Sci Nat Bot Ser 12(5):229–498

    Google Scholar 

  • Catteson AM (1984) La dynamique cambiale. Ann Sci Nat Bot Ser 13(6):23–43

    Google Scholar 

  • Cottrell AH (1964) The mechanical properties of matter. John Wiley & Sons, New York

    Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Harcourt/Academic Press, San Diego

    Google Scholar 

  • Erickson RO (1986) Symplastic growth and symplasmic transport. Plant Physiol 82:1153

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy. John Wiley & Sons, New York

    Google Scholar 

  • Evert RF (1961) Some aspects of cambial development in Pyrus communis. Am J Bot 48:479–488. doi:10.2307/2439451

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy; Meristems, cells and tissues of the plant body; Their structure, function and development, 3rd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  • Fahn A (1967) Plant Anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Forest L, Martin JS, Padilla F, Chassat F, Giroud F, Demongeot J (2004) Morphogenetic processes: application to cambial growth dynamics. Acta Biotheor 52:415–438. doi:10.1023/B:ACBI.0000046607.17817.20

    Article  Google Scholar 

  • Forest L, Padilla F, Martinez S, Demongeot J, San Martin J (2006) Modeling of auxin transport affected by gravity and differential radial growth. J Theor Biol 241:241–251. doi:10.1016/j.jtbi.2005.11.029

    Article  Google Scholar 

  • Funada R, Catesson AM (1991) Partial cell wall lysis and the resumption of meristematic activity in Fraxinus excelsior cambium. IAWA Bull (n. s) 12:439–444

    Google Scholar 

  • Gandar PW (1983) Growth in root apices II. Deformation and rate of deformation. Bot Gaz 144:11–19. doi:10.1086/337338

    Article  Google Scholar 

  • Guitard D, Masse H, Yamamoto H, Okuyama T (1999) Growth stress generation: a new mechanical model of the dimensional change of wood cells during maturation. J Wood Sci 45:384–391. doi:10.1007/BF01177910

    Article  Google Scholar 

  • Hejnowicz Z (1961) Anticlinal divisions, intrusive growth, and loss of fusiform initials in nonstoreyed cambium. Acta Soc Bot Pol 30:729–758

    Google Scholar 

  • Hejnowicz Z (1968) The structural mechanism involved in the changes of grain in timber. Acta Soc Bot Pol 37:347–365

    Google Scholar 

  • Hejnowicz Z, Brański S (1966) Quantitative analysis of cambium growth in Thuja. Acta Soc Bot Pol 35:395–400

    Google Scholar 

  • Hejnowicz Z, Romberger JA (1984) Growth tensor of plant organs. J Theor Biol 110:93–114. doi:10.1016/S0022-5193(84)80017-X

    Article  Google Scholar 

  • Hejnowicz Z, Zagórska–Marek B (1974) Mechanism of changes in grain inclination in wood produced by storeyed cambium. Acta Soc Bot Pol 43:381–398

    Google Scholar 

  • Iqbal M (1990) The vascular cambium. Research Studies Press, Taunton

    Google Scholar 

  • Iqbal M (1995) Structure and behaviour of vascular cambium and the mechanism and control of cambial growth. In: Iqbal M (ed) The cambial derivatives. Stuttgart, Germany, pp 1–67

    Google Scholar 

  • Jean RV (1984) Mathematical approach to pattern and form in plant growth. John Wiley & Sons, New York

    Google Scholar 

  • Jura J (2005) Formation of storeyed structure in the cambium of Wisteria floribunda DC. Ph. D thesis, Department of Biophysics and Cell Biology, Silesian University, Poland (in Polish)

  • Jura J, Kojs P, Iqbal M, Szymanowska-Pułka J, Włoch W (2006) Apical intrusive growth of cambial fusiform initial along the tangential walls of adjacent fusiform initials: evidence for a new concept. Aust J Bot 54:493–504. doi:10.1071/BT05130

    Article  Google Scholar 

  • Kojs P, Włoch W, Rusin A (2004a) Rearrangement of cells in storeyed cambium of Lonchocarpus sericeus (Poir.) DC. connected with formation of interlocked in the xylem. Trees (Berl) 18:136–144. doi:10.1007/s00468-003-0292-9

    Google Scholar 

  • Kojs P, Włoch W, Iqbal M, Rusin A, Jura J (2004b) Readjustment of cambial initials in Wisteria floribunda (Willd.) DC to ensure the development of storeyed structure. New Phytol 163:287–297. doi:10.1111/j.1469-8137.2004.01120.x

    Article  Google Scholar 

  • Kramer EM (2002) A Mathematical model of pattern formation in the vascular cambium of trees. J Theor Biol 216:147–158. doi:10.1006/jtbi.2002.2551

    Article  Google Scholar 

  • Kramer EM, Groves JV (2003) Defect coarsening in a biological system: the vascular cambium of cottonwood trees. Phys Rev E 67:041914-1–041914-4

    Article  Google Scholar 

  • Krawczyszyn J (1977) The transition from non–storeyed to storeyed cambium in Fraxinus excelsior. 1. The occurrence of radial anticlinal divisions. Can J Bot 55:3034–3041. doi:10.1139/b77-342

    Article  Google Scholar 

  • Krawczyszyn J, Romberger JA (1979) Cyclical cell length changes in wood in relation to storied structure and interlocked grain. Can J Bot 57:787–794. doi:10.1139/b79-100

    Article  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. In: Timell TE (ed) Springer Series in Wood Science. Springer-Verlag, Berlin

    Google Scholar 

  • Meek GA (1976) Practical electron microscopy for biologists. John Wiley & Sons, London

    Google Scholar 

  • Nägeli C (1864) Dickenwachstum des Stengels und Anordnung der Gefässstränge bei den Sapindaceen. Beitr Wiss Bot 4:1–72

    Google Scholar 

  • Philipson WR, Ward JM, Butterfield BG (1971) The vascular cambium its development and activity. Chapman and Hall Ltd, London

    Google Scholar 

  • Prusinkiewicz P (2003) Modeling plant growth and development. Curr Opin Plant Biol 7:79–83. doi:10.1016/j.pbi.2003.11.007

    Article  Google Scholar 

  • Włoch W, Połap E (1994) The intrusive growth of initial cells in re-arrangement of cells in cambium of Tilia cordata Mill. Acta Soc Bot Pol 63:109–116

    Google Scholar 

  • Włoch W, Mazur E, Kojs P (2001) Intensive change of inclination of cambial initials in Picea abies (L.) Karst. tumours. Trees (Berl) 15:498–502. doi:10.1007/s00468-001-0127-5

    Article  Google Scholar 

  • Włoch W, Mazur E, Bełtowski M (2002) Formation of spiral grain in the wood of Pinus sylvestris L. Trees (Berl) 16:306–312. doi:10.1007/s00468-002-0174-6

  • Włoch W, Jura-Morawiec J, Kojs P, Iqbal M, Krawczyszyn J (2009) Does intrusive growth of fusiform initials really contribute to circumferential growth of vascular cambium? Botany 87:1–10. doi:10.1139/B08-122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Włoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karczewska, D., Karczewski, J., Włoch, W. et al. Mathematical Modeling of Intrusive Growth of Fusiform Initials in Relation to Radial Growth and Expanding Cambial Circumference in Pinus sylvestris L.. Acta Biotheor 57, 331–348 (2009). https://doi.org/10.1007/s10441-009-9068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-009-9068-y

Keywords

Navigation