Skip to main content
Log in

Multiresolution Expansions of Distributions: Pointwise Convergence and Quasiasymptotic Behavior

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In several variables, we prove the pointwise convergence of multiresolution expansions to the distributional point values of tempered distributions and distributions of superexponential growth. The article extends and improves earlier results by G.G. Walter and B.K. Sohn and D.H. Pahk that were shown in one variable. We also provide characterizations of the quasiasymptotic behavior of distributions at finite points and discuss connections with α-density points of measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. This definition of the order of a distributional point value is due to Łojasiewicz [9, Sect. 8]. It is more general than those used in [5, 26, 32, 37], which are rather based on (4.6).

References

  1. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  2. De Lellis, C.: Rectifiable Sets, Densities and Tangent Measures. European Mathematical Society, Zürich (2008)

    Book  MATH  Google Scholar 

  3. Estrada, R.: Characterization of the Fourier series of a distribution having a value at a point. Proc. Am. Math. Soc. 124, 1205–1212 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Estrada, R., Kanwal, R.P.: A Distributional Approach to Asymptotics. Theory and Application. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  5. Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series. Z. Anal. Anwend. 29, 487–504 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gelfand, I.M., Shilov, G.E.: Generalized Functions. Vol. II. Academic Press, San Diego (1968)

    Google Scholar 

  7. Kelly, S.E., Kon, M.A., Raphael, L.A.: Local convergence for wavelet expansions. J. Funct. Anal. 126, 102–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Łojasiewicz, S.: Sur la valeur et la limite d’une distribution en un point. Stud. Math. 16, 1–36 (1957)

    MATH  Google Scholar 

  9. Łojasiewicz, S.: Sur la fixation des variables dans une distribution. Stud. Math. 17, 1–64 (1958)

    MATH  Google Scholar 

  10. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^{2}(\mathbb{R})\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Meyer, Y.: Wavelets, Vibrations and Scalings. AMS, Providence (1998)

    MATH  Google Scholar 

  14. Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  15. Pilipović, S., Takači, A., Teofanov, N.: Wavelets and quasiasymptotics at a point. J. Approx. Theory 97, 40–52 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pilipović, S., Teofanov, N.: Multiresolution expansion, approximation order and quasiasymptotic behaviour of tempered distributions. J. Math. Anal. Appl. 331, 455–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pilipović, S., Vindas, J.: Multidimensional Tauberian theorems for vector-valued distributions. Publ. Inst. Math. (Belgr.) 95, 1–28 (2014)

    Article  Google Scholar 

  18. Rakić, D.: Multiresolution expansion in \(\mathcal{D}'_{L^{p}}(\mathbb{R}^{n})\). Integral Transforms Spec. Funct. 20, 231–238 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  20. Saneva, K.: Asymptotic behaviour of wavelet coefficients. Integral Transforms Spec. Funct. 20, 333–339 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saneva, K., Vindas, J.: Wavelet expansions and asymptotic behavior of distributions. J. Math. Anal. Appl. 370, 543–554 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schwartz, L.: Théorie des distributions. Hermann, Paris (1957)

    MATH  Google Scholar 

  23. Seneta, E.: Regularly Varying Functions. Springer, Berlin-New York (1976)

    Book  MATH  Google Scholar 

  24. Sohn, B.K.: Quasiasymptotics in exponential distributions by wavelet analysis. Nihonkai Math. J. 23, 21–42 (2012)

    MathSciNet  Google Scholar 

  25. Sohn, B.K.: Multiresolution expansion and approximation order of generalized tempered distributions. Int. J. Math. Math. Sci. 2013, 190981 (2013), 8 pp.

    Article  MathSciNet  Google Scholar 

  26. Sohn, B.K., Pahk, D.H.: Pointwise convergence of wavelet expansion of \(\mathcal {K}_{M}^{r}{'}(\mathbb{R})\). Bull. Korean Math. Soc. 38, 81–91 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Sznajder, S., Zieleźny, Z.: Solvability of convolution equations in \(\mathcal{K}'_{p}\), p>1. Pac. J. Math. 63, 539–544 (1976)

    Article  MATH  Google Scholar 

  28. Tao, T.: On the almost everywhere convergence of wavelet summation methods. Appl. Comput. Harmon. Anal. 3, 384–387 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Teofanov, N.: Convergence of multiresolution expansions in the Schwartz class. Math. Balk. 20, 101–111 (2006)

    MATH  MathSciNet  Google Scholar 

  30. Vindas, J., Estrada, R.: Distributional point values and convergence of Fourier series and integrals. J. Fourier Anal. Appl. 13, 551–576 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vindas, J., Estrada, R.: On the support of tempered distributions. Proc. Edinb. Math. Soc. (2) 53, 255–270 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vindas, J., Estrada, R.: On the order of summability of the Fourier inversion formula. Anal. Theory Appl. 26, 13–42 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin. Math. Nachr. 282, 1584–1599 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vindas, J., Pilipović, S., Rakić, D.: Tauberian theorems for the wavelet transform. J. Fourier Anal. Appl. 17, 65–95 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vladimirov, V.S., Drozzinov, Yu.N., Zavialov, B.I.: Tauberian Theorems for Generalized Functions. Kluwer Academic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  36. Walter, G.G.: Pointwise convergence of distribution expansions. Stud. Math. 26, 143–154 (1966)

    MATH  Google Scholar 

  37. Walter, G.G.: Pointwise convergence of wavelet expansions. J. Approx. Theory 80, 108–118 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Walter, G.G., Shen, X.: Wavelets and Other Orthogonal Systems. Chapman & Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  39. Zav’yalov, B.I.: Asymptotic properties of functions that are holomorphic in tubular cones. Mat. Sb. (N. S.) 136(178), 97–114 (1988) (in Russian). Translation in Math. USSR-Sb. 64, 97–113 (1989)

    Google Scholar 

  40. Zayed, A.I.: Pointwise convergence of a class of non-orthogonal wavelet expansions. Proc. Am. Math. Soc. 128, 3629–3637 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasson Vindas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostadinova, S., Vindas, J. Multiresolution Expansions of Distributions: Pointwise Convergence and Quasiasymptotic Behavior. Acta Appl Math 138, 115–134 (2015). https://doi.org/10.1007/s10440-014-9959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9959-z

Keywords

Mathematics Subject Classification (2010)

Navigation