Skip to main content
Log in

Moment Equations for Polyatomic Gases

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The aim of this paper is to analyze the moment equations for polyatomic gases whose internal degrees of freedom are modeled by a continuous internal energy function. The closure problem is resolved using the maximum entropy principle. The macroscopic equations are divided in two hierarchies—“momentum” and “energy” one. As an example, the system of 14 moments equations is studied. The main new result is determination of the production terms which contain two parameters. They can be adapted to fit the expected values of Prandtl number and/or temperature dependence of the viscosity. The ratios of relaxation times are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4-6), 271–292 (2012)

    Article  MATH  Google Scholar 

  2. Bisi, M., Martaló, G., Spiga, G.: Multi-temperature hydrodynamic limit from kinetic theory in a mixture of rarefied gases. Acta Appl. Math. 122, 37–51 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  Google Scholar 

  6. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B, Fluids 13(2), 237–254 (1994)

    MATH  Google Scholar 

  7. Brini, F., Ruggeri, T.: Entropy principle for the moment systems of degree α associated to the Boltzmann equation. Critical derivatives and non controllable boundary data. Contin. Mech. Thermodyn. 14, 165–189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  9. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B, Fluids 24, 219–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A, Math. Gen. 20, 6505–6517 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kogan, M.N.: On the principle of maximum entropy. In: Rarefied Gas Dynamics, Vol. I, pp. 359–368. Academic Press, New York (1967)

    Google Scholar 

  13. Kogan, M.N.: Rarefied Gas Dynamics. Plenum, New York (1969)

    Book  Google Scholar 

  14. Kremer, G.M.: Extended thermodynamics of non-ideal gases. Physica A 144, 156–178 (1987)

    Article  Google Scholar 

  15. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, Berlin (2010)

    Book  Google Scholar 

  16. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, I.-S.: Extended thermodynamics of fluids and virial equations of state. Arch. Ration. Mech. Anal. 88, 1–23 (1985)

    MATH  Google Scholar 

  18. Madjarević, D., Simić, S.: Shock structure in helium-argon mixture—a comparison of hyperbolic multi-temperature model with experiment. Europhys. Lett. 102, 44002 (2013)

    Article  Google Scholar 

  19. Mallinger, F.: Generalization of the Grad theory to polyatomic gases. INRIA Research Report, No. 3581 (1998)

  20. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1993)

    MATH  Google Scholar 

  21. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1998)

    Book  MATH  Google Scholar 

  22. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302–1317 (2013)

    Article  MathSciNet  Google Scholar 

  23. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics. Contin. Mech. Thermodyn. 1, 3–20 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ruggeri, T., Simić, S.: On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models. Math. Methods Appl. Sci. 30, 827–849 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang Chang, C.S., Uhlenbeck, G.E., de Boer, J.: The heat conductivity and viscosity of polyatomic gases. In: Studies in Statistical Mechanics, vol. II, pp. 243–268. North-Holland, Amsterdam (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srboljub Simić.

Additional information

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, within the project “Mechanics of nonlinear and dissipative systems—contemporary models, analysis and applications”, Project No. ON174016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavić-Čolić, M., Simić, S. Moment Equations for Polyatomic Gases. Acta Appl Math 132, 469–482 (2014). https://doi.org/10.1007/s10440-014-9928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9928-6

Keywords

Mathematics Subject Classification

Navigation