Skip to main content
Log in

Variational Approach to a Class of Second Order Hamiltonian Systems on Time Scales

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for the second order Hamiltonian system on time scale \(\mathbb{T}\)

$$\left\{\begin{array}{l@{\quad}l}u^{\Delta^{2}}(t)+A(\sigma(t))u(\sigma(t))+\nabla F(\sigma(t),u(\sigma(t)))=0,& \hbox{\ $\Delta$-a.e. $t\in [0,T]_{_{\mathbb{T}}}^{\kappa}$,} \\u(0)-u(T)=0,\qquad u^{\Delta}(0)-u^{\Delta}(T)=0,& \hbox{}\end{array}\right.$$

where u Δ(t) denotes the delta (or Hilger) derivative of u at t, \(u^{\Delta^{2}}(t)=(u^{\Delta})^{\Delta}(t)\), σ is the forward jump operator, T is a positive constant, A(t)=[d ij (t)] is a symmetric N×N matrix-valued function defined on \([0,T]_{\mathbb{T}}\) with \(d_{ij}\in L^{\infty}([0,T]_{\mathbb{T}},\mathbb{R})\) for all i,j=1,2,…,N, and \(F:[0,T]_{\mathbb{T}}\times \mathbb{R}^{N}\rightarrow\mathbb{R}\). By establishing a proper variational setting, two existence results and two multiplicity results are obtained. Finally, three examples are presented to illustrate the feasibility and effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilger, S.: Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Su, Y.H., Li, W.T.: Periodic solution for non-autonomous second order Hamiltonian systems on time scales. Dyn. Syst. Appl. 18, 621–636 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Su, Y.H.: p-Laplacian boundary value problems and periodic solutions of Hamiltonian systems on time scales. Ph.D. Thesis, Lanzhou University (2008)

  4. Agarwal, R.P., Bohner, M., Li, W.T.: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Dekker, New York (2004)

    Book  MATH  Google Scholar 

  5. Zhang, H.T., Li, Y.K.: Existence of positive periodic solutions for functional differential equations with impulse effects on time scales. Commun. Nonlinear Sci. Numer. Simul. 14, 19–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Davidson, F.A., Rynne, B.P.: Eigenfunction expansions in L 2 spaces for boundary value problems on time-scales. J. Math. Anal. Appl. 335, 1038–1051 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaufmann, E.R., Raffoul, Y.N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319, 315–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, H.R., Li, W.T.: Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales. J. Differ. Equ. 240, 217–248 (2007)

    Article  MATH  Google Scholar 

  10. Otero-Espinar, V., Vivero, D.R.: Existence and approximation of extremal solutions to first-order infinite systems of functional dynamic equations. J. Math. Anal. Appl. 339, 590–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, Z.C., Xiao, T.J., Liang, J.: Existence of positive solutions for singular boundary value problem on time scales. J. Math. Anal. Appl. 325, 517–528 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, L.Q., Zhou, Z.: Existence of weak solutions of two-point boundary value problems for second-order dynamic equations on time scales. Nonlinear Anal. 69, 1376–1388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agarwal, R.P., Bohner, M., Řehák, P.: Half-linear dynamic equations. In: Nonlinear Analysis and Applications to V. Lakshmikantham on his 80th Birthday, vol. 1, pp. 1–57. Kluwer Academic, Dordrecht (2003)

    Chapter  Google Scholar 

  14. Zhou, J.W., Li, Y.K.: Sobolev’s spaces on time scales and its application to a class of second order Hamiltonian systems on time scales. Nonlinear Anal. 73, 1375–1380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.K., Zhou, J.W.: Existence of solutions for a class of damped vibration problems on time scales. Adv. Differ. Equ. 2010, 727486 (2010), 27 pp. doi:10.1155/2010/727486

    Article  Google Scholar 

  16. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  17. Guseinov, G.Sh.: Integration on time scales. J. Math. Anal. Appl. 285, 107–127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Agarwal, R.P., Otero-Espinar, V., Perera, K., Vivero, D.R.: Basic properties of Sobolev’s spaces on time scales. Adv. Differ. Equ. 2006, 38121 (2006), 14 pp.

    MathSciNet  Google Scholar 

  19. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989)

    MATH  Google Scholar 

  20. Luan, S.X., Mao, A.M.: Periodic solutions for a class of non-autonomous Hamiltonian systems. Nonlinear Anal. 61, 1413–1426 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differential Equations. CBMS Regional Conf. Ser. in Math., vol. 65. American Mathematical Society, Providence (1986)

    Google Scholar 

  22. Bartsch, T., Ding, Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267–1288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31, 157–184 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkun Li.

Additional information

This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grant 10971183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Li, Y. Variational Approach to a Class of Second Order Hamiltonian Systems on Time Scales. Acta Appl Math 117, 47–69 (2012). https://doi.org/10.1007/s10440-011-9649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-011-9649-z

Keywords

Mathematics Subject Classification (2000)

Navigation