Skip to main content
Log in

On the Extremal Zagreb Indices of Graphs with Cut Edges

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

An Erratum to this article was published on 09 February 2010

Abstract

For a (molecular) graph, the first Zagreb index M 1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M 2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we show that all connected graphs with n vertices and k cut edges, the maximum (resp. minimum) M 1- and M 2-value are obtained, respectively, and uniquely, at K k n (resp. P k n ), where K k n is a graph obtained by joining k independent vertices to one vertex of K nk and P k n is a graph obtained by connecting a pendent path P k+1 to one vertex of C nk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaban, A.T., Motoc, I., Bonchev, D., Mekenyan, O.: Topological indices for structure-activity correlations. Top. Curr. Chem. 114, 21–55 (1983)

    Article  Google Scholar 

  2. Basak, S.C., Grunwald, G.D., Niemi, G.J.: Use of graph-theoretic geometric molecular descriptors in structure-activity relationships. In: Balaban, A.T. (ed.) From Chemical Topology to Three-Dimensional Geometry, pp. 73–116. Plenum Press, New York (1997)

    Google Scholar 

  3. Basak, S.C., Gute, B.D., Grunwald, G.D.: A hierarchical approach to the development of QSAR models using topological, geometrical and quantum chemical parameters. In: Devillers, J., Balaban, A.T. (eds.) Topological Indices and Related Descriptors in QSAR and QSPR, pp. 675–696. Gordon & Breach, Amsterdam (1999)

    Google Scholar 

  4. Bollobás, B.: Modern Graph Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Bollobás, B., Erdös, P.: Graphs of extremal weights. Ars Comb. 50, 225–233 (1998)

    MATH  Google Scholar 

  6. Bollobás, B., Erdös, P., Sarkar, A.: Extremal graphs for weights. Discrete Math. 200, 5–19 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bondy, J.A., Murty, U.S.: Graph Theory and its Applications. The Macmillan Press, London (1976)

    Google Scholar 

  8. Braun, J., Kerber, A., Meringer, M., Rücker, C.: Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts. MATCH Commun. Math. Comput. Chem. 54, 163–176 (2005)

    MATH  MathSciNet  Google Scholar 

  9. de Caen, D.: An upper bound on the sum of squares of degrees in a graph. Discrete Math. 185, 245–248 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, S., Deng, H.: Extremal (n,n+1)-graphs with respected to zeroth-order general Randić index. J. Math. Chem. 42, 555–564 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cioabǎs, S.M.: Sum of powers of the degrees of a graph. Discrete Math. 306, 1959–1964 (2006)

    Article  MathSciNet  Google Scholar 

  12. Vukičević, D., Rajtmajer, S.M., Trinajstić, N.: Trees with maximal second Zagreb index and prescribed number of vertices of the given degree. MATCH Commun. Math. Comput. Chem. 60, 65–70 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Das, K.: Maximizing the sum of the squares of degrees of a graph. Discrete Math. 257, 57–66 (2004)

    Article  Google Scholar 

  14. Das, K., Gutman, I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103–112 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Deng, H.: A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 57, 597–616 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Garcia-Domenech, R., Galvez, J., de Julian-Ortiz, J.V., Pogliani, L.: Some new trends in chemical graph theory. Chem. Rev. 108, 1127–1169 (2008)

    Article  Google Scholar 

  17. Gutman, I.: Chemical graph theory—the mathematical connection. In: Sabin, J.R., Brädas, E.J. (eds.) Advances in Quantum Chemistry, vol. 51, pp. 125–138. Elsevier, Amsterdam (2006)

    Google Scholar 

  18. Gutman, I., Furtula, B. (eds.): Recent Results in the Theory of Randić Index. University of Kragujevac, Kragujevac (2008)

    Google Scholar 

  19. Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Article  Google Scholar 

  20. Gutman, I., Ruščić, B., Trinajstić, N., Wilcox, C.F.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)

    Article  Google Scholar 

  21. Gutman, I., Furtula, B., Toropov, A., Toropova, P.: The graph of atomic orbitals and its basic properties. II. Zagreb indices. MATCH Commun. Math. Comput. Chem. 53, 225–230 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Gutman, I., Vidović, D.: Two early branching indices and the relation between them. Theor. Chem. Acc. 108, 98–102 (2002)

    Google Scholar 

  23. Gutman, I., Das, K.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Ismailescu, D., Stefanica, D.: Minimizer graphs for a class of extremal problems. J. Graph Theory 39, 230–240 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jiang, Y., Lu, M.: On the connectivity index of trees. J. Math. Chem. 43, 955–965 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kardoš, F., Šrekovski, R.: Cyclic edge-cuts in fullerene graphs. J. Math. Chem. (2007). doi:10.1007/s10910-007-9296-9

    Google Scholar 

  27. Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)

    Google Scholar 

  28. Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure-Activity Analysis. Research Studies Press/Wiley, Letchworth/New York (1986)

    Google Scholar 

  29. Kier, L.B., Hall, L.H., Murray, W.J., Randić, M.: Molecular-connectivity I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64, 1971–1974 (1975)

    Article  Google Scholar 

  30. Li, S., Zhao, Q.: On acyclic and unicyclic conjugated graphs with maximum Zagreb indices. Util. Math. (2009, accepted)

  31. Li, X., Gutman, I.: Mathematical Aspects of Randić-Type Molecular Structure Descriptors. University of Kragujevac, Kragujevac (2006)

    Google Scholar 

  32. Li, X., Shi, Y.: A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 59, 127–156 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Liu, B.: Some estimations of Zagreb indices. Util. Math. 74, 239–245 (2007)

    MATH  MathSciNet  Google Scholar 

  34. Liu, B., Gutman, I.: Upper bounds for Zagreb indices of connected graphs. MATCH Commun. Math. Comput. Chem. 55, 439–446 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Liu, H., Lu, M., Tian, F.: Tree of extremal connectivity index. Discrete Appl. Math. 154, 106–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu, H., Lu, M., Tian, F.: On the spectral radius of graphs with cut edges. Linear Algebra Appl. 389, 139–145 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Merrifield, R.E., Simmons, H.E.: Topological Methods in Chemistry. Wiley, New York (1989)

    Google Scholar 

  38. Nikolić, S., Trinajstić, N., Baučić, I.: Comparison between the vertex- and edge-connectivity indices for benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 38, 42–46 (1998)

    Google Scholar 

  39. Nikolić, S., Kovačević, G., Milićević, A., Trinajstić, N.: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)

    Google Scholar 

  40. Peled, U.N., Petreschi, R., Sterbini, A.: (n,e)-graphs with maximum sum of squares of degrees. J. Graph Theory 31, 283–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pepper, R., Henry, G., Sexton, D.: Cut-edges and the independence number. MATCH Commun. Math. Comput. Chem. 56, 403–408 (2006)

    MATH  MathSciNet  Google Scholar 

  42. Pepper, R., Klein, D.J.: Some theorems about the Randić connectivity index. MATCH Commun. Math. Comput. Chem. 58, 359–364 (2007)

    MATH  MathSciNet  Google Scholar 

  43. Pogliani, L.: From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors. Chem. Rev. 100, 3827–3858 (2000)

    Article  Google Scholar 

  44. Rada, J., Uzcátegui, C.: Randić ordering of chemical trees. Discrete Appl. Math. 150, 232–250 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Randić, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  46. Randić, M.: On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 59, 5–124 (2008)

    MATH  MathSciNet  Google Scholar 

  47. Randić, M.: The connectivity index 25 years after. J. Mol. Graph. Model. 20, 19–35 (2001)

    Article  Google Scholar 

  48. Rouvray, D.H.: The search for useful topological indices in chemistry. Am. Sci. 61, 729–735 (1973)

    Google Scholar 

  49. Sabljić, A., Trinajstić, N.: Quantitative structure–activity relationships: The role of topological indices. Acta Pharm. Jugosl. 31, 189–214 (1981)

    Google Scholar 

  50. Sun, L., Chen, R.: The second Zagreb index of acyclic conjugated molecules. MATCH Commun. Math. Comput. Chem. 60, 57–64 (2008)

    MATH  MathSciNet  Google Scholar 

  51. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)

    Book  Google Scholar 

  52. Trinajstić, N.: Chemical Graph Theory. CRC Press, Boca Raton (1992)

    Google Scholar 

  53. Wu, Y.R., He, S., Shu, J.L.: Largest spectral radius among graphs with k cut edges. J. East China Norm. Univ. Nat. Sci. Ed. 3, 67–74 (2007) (Chinese)

    MathSciNet  Google Scholar 

  54. Yan, Z., Liu, H., Liu, H.: Sharp bounds for the second Zagreb index of unicyclic graphs. J. Math. Chem. 42, 565–574 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zhou, B., Gutman, I.: Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233–239 (2005)

    MATH  MathSciNet  Google Scholar 

  56. Zhou, B.: Zagreb indices. MATCH Commun. Math. Comput. Chem. 52, 113–118 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuchao Li.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10440-010-9566-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Hu, X. & Li, S. On the Extremal Zagreb Indices of Graphs with Cut Edges. Acta Appl Math 110, 667–684 (2010). https://doi.org/10.1007/s10440-009-9467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9467-8

Keywords

Mathematics Subject Classification (2000)

Navigation