Skip to main content
Log in

Linear Stochastic Systems: A White Noise Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Using the white noise setting, in particular the Wick product, the Hermite transform, and the Kondratiev space, we present a new approach to study linear stochastic systems, where randomness is also included in the transfer function. We prove BIBO type stability theorems for these systems, both in the discrete and continuous time cases. We also consider the case of dissipative systems for both discrete and continuous time systems.We further study 1- 2 stability in the discrete time case, and L 2-L stability in the continuous time case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D.: The Schur Algorithm, Reproducing Kernel Spaces and System Theory. American Mathematical Society, Providence (2001). Translated from the 1998 French original by Stephen S. Wilson, Panoramas et Synthèses (Panoramas and Syntheses)

    MATH  Google Scholar 

  2. Alpay, D., Ball, J., Peretz, Y.: System theory, operator models and scattering: the time-varying case. J. Oper. Theory 47(2), 245–286 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Alpay, D., Dewilde, P.: Time-varying signal approximation and estimation. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Signal Processing, Scattering and Operator Theory, and Numerical Methods, Amsterdam, 1989. Progress in Systems and Control Theory, vol. 5, pp. 1–22. Birkhäuser, Boston (1990)

    Google Scholar 

  4. Alpay, D., Dewilde, P., Dym, H.: Lossless inverse scattering and reproducing kernels for upper triangular operators. In: Gohberg, I. (ed.) Extension and Interpolation of Linear Operators and Matrix Functions. Oper. Theory Adv. Appl., vol. 47, pp. 61–135. Birkhäuser, Basel (1990)

    Google Scholar 

  5. Alpay, D., Dijksma, A., Peretz, Y.: Nonstationary analogs of the Herglotz representation theorem: the discrete case. J. Funct. Anal. 166(1), 85–129 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H.: Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces. Operator Theory: Advances and Applications, vol. 96. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  7. Alpay, D., Leblond, J.: Loewner type interpolation in matrix Hardy spaces. Z. Anal. Anwend. 14, 225–233 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Alpay, D., Levanony, D.: Rational functions associated with the white noise space and related topics. Potential Anal. 29, 195–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ball, J., Gohberg, I., Kaashoek, M.A.: Nevanlinna–Pick interpolation for time-varying input-output maps: the discrete case. In: Gohberg, I. (ed.) Time-Variant Systems and Interpolation. Oper. Theory Adv. Appl., vol. 56, pp. 1–51. Birkhäuser, Basel (1992)

    Google Scholar 

  10. Ball, J., Sadosky, C., Vinnikov, V.: Scattering systems with several evolutions and multidimensional input/state/output systems. Integral Equ. Oper. Theory 52(3), 323–393 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ball, J., Vinnikov, V.: Functional models for representations of the Cuntz algebra. In: Operator Theory, Systems Theory and Scattering Theory: Multidimensional Generalizations. Oper. Theory Adv. Appl., vol. 157, pp. 1–60. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  12. Biagini, F., Øksendal, B., Sulem, A., Wallner, N.: An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2041), 347–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, Princeton (1949). Reprinted with permission of the original publishers, Kraus Reprint Corporation, New York, 1965

    MATH  Google Scholar 

  14. de Branges, L., Rovnyak, J.: Canonical models in quantum scattering theory. In: Wilcox, C. (ed.) Perturbation Theory and Its Applications in Quantum Mechanics, pp. 295–392. Wiley, New York (1966)

    Google Scholar 

  15. de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehart and Winston, New York (1966)

    MATH  Google Scholar 

  16. Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1987)

    Google Scholar 

  17. Deprettere, E., Dewilde, P.: The Generalized Schur Algorithm. Operator Theory: Advances and Applications, vol. 29. Birkhäuser, Basel (1988), pp. 97–115

    Google Scholar 

  18. Descombes, R.: Intégration. Enseigement des Sciences, vol. 15. Hermann, Paris (1972)

    MATH  Google Scholar 

  19. Dewilde, P., Deprettere, E.: Approximative inversion of positive matrices with applications to modelling. In: Curtain, R. (ed.) Modelling, Robustness and Sensitivity Reduction in Control Systems. NATO ASI Series, vol. F34, pp. 312–238. Springer, Berlin (1987)

    Google Scholar 

  20. Dewilde, P., Dym, H.: Schur recursions, error formulas and convergence of rational estimators for stationary stochastic processes. IEEE Trans. Inf. Theory 27, 446–461 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dewilde, P., Dym, H.: Interpolation for upper triangular operators. In: Gohberg, I. (ed.) Time-Variant Systems and Interpolation. Oper. Theory Adv. Appl., vol. 56, pp. 153–260. Birkhäuser, Basel (1992)

    Google Scholar 

  22. Dewilde, P., van der Veen, A.-J.: Time-Varying Systems and Computations. Kluwer Academic, Boston (1998)

    MATH  Google Scholar 

  23. Dieudonné, J.: Eléments d’Analyse. Fondements de l’Analyse Moderne, vol. 1. Gauthier–Villars, Paris (1969)

    Google Scholar 

  24. Doyle, J., Francis, B., Tannenbaum, A.: Feedback Control Theory. Macmillan, New York (1992)

    Google Scholar 

  25. Duncan, T.E.: Some applications of fractional Brownian motion to linear systems. In: System Theory: Modeling, Analysis and Control, Cambridge, MA, 1999. Kluwer Int. Ser. Eng. Comput. Sci., vol. 518, pp. 97–105. Kluwer Academic, Boston (2000)

    Google Scholar 

  26. Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38(2), 582–612 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  27. Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: Adaptive control for semilinear stochastic systems. SIAM J. Control Optim. 38(6), 1683–1706 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Elliott, R.J., van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13(2), 301–330 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fourès, Y., Segal, I.E.: Causality and analyticity. Trans. Am. Math. Soc. 78, 385–405 (1955)

    Article  MATH  Google Scholar 

  30. Fritzsche, B., Kirstein, B. (eds.) Ausgewählte Arbeiten zu den Ursprüngen der Schur-Analysis. Teubner-Archiv zur Mathematik, vol. 16. Teubner, Stuttgart (1991)

    Google Scholar 

  31. Gohberg, I. (ed.) I. Schur Methods in Operator Theory and Signal Processing. Operator theory: Advances and Applications, vol. 18. Birkhäuser, Basel (1986)

    MATH  Google Scholar 

  32. Gohberg, I., Goldberg, S., Kaashoek, M.A. Classes of Linear Operators. Vol. II. Operator Theory: Advances and Applications, vol. 63. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  33. Guelfand, I.M., Vilenkin, N.Y.: Les distributions. Tome 4: Applications de l’Analyse Harmonique. Collection Universitaire de Mathématiques, vol. 23. Dunod, Paris (1967)

    MATH  Google Scholar 

  34. Helton, J.W.: In: Operator Theory, Analytic Functions, Matrices and Electrical Engineering. CBMS Lecture Notes, vol. 68. Am. Math. Soc., Rhodes Island (1987)

    Google Scholar 

  35. Hida, T.: Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes, vol. 13. Carleton Univ., Ottawa (1975).

    MATH  Google Scholar 

  36. Hida, T., Kuo, H., Potthoff, J., Streit, L.: An infinite-dimensional calculus. In: White Noise. Mathematics and Its Applications, vol. 253. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  37. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Probability and Its Applications. Birkhäuser, Boston (1996)

    Google Scholar 

  38. Horváth, J.: Topological Vector Spaces and Distributions. Vol. I. Addison-Wesley, Reading (1966)

    MATH  Google Scholar 

  39. Kailath, T.: Linear Systems. Prentice-Hall Information and System Sciences Series. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  40. Kalman, R.E.: Mathematical description of linear dynamical systems. J. SIAM Control, Ser. A 1, 152–192 (1963)

    MATH  MathSciNet  Google Scholar 

  41. Kumar, P.R.: Optimal adaptive control of linear-quadratic-Gaussian systems. SIAM J. Control Optim. 21(2), 163–178 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kuo, H.-H.: White Noise Distribution Theory. Probability and Stochastics Series CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  43. Lacroix-Sonrier, M.T.: Distributions, Espaces de Sobolev, Applications. Mathématiques 2e cycle. Ellipses, Éditions Marketing S.A., 32 rue Bargue, Paris 15e (1998)

  44. Lax, P.D.: Translation invariant spaces. In: Proc. Int. Symp. Linear Spaces, Jerusalem, 1960, pp. 299–306. Jerusalem Academic Press, Jerusalem (1961)

    Google Scholar 

  45. Levanony, D., Caines, P.: Stochastic Lagrangian adaptive LQG control. In: Stochastic Theory and Control, Lawrence, KS, 2001. Lecture Notes in Control and Inform. Sci., vol. 280, pp. 283–300. Springer, Berlin (2002)

    Chapter  Google Scholar 

  46. Livšic, M.S.: On the theory of isometric operators with equal deficiency indices. Dokl. Akad. Nauk SSSR (N.S.) 58, 13–15 (1947)

    Google Scholar 

  47. Livs̆ic, M.S.: On a class of linear operators in Hilbert spaces. Math. USSR-Sb. 61, 239–262 (1946). English translation in: American mathematical society translations, 13(2), 61–84 (1960)

    Google Scholar 

  48. Livs̆ic, M.S.: Operator Colligations, Waves, Open Systems. Transl. Math. Monogr. AMS. AMS, Providence (1973)

    Google Scholar 

  49. Padulo, L., Arbib, M.A.: A unified state-space approach to continuous and discrete systems. In: System Theory. Saunders, Philadelphia (1974)

    Google Scholar 

  50. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  51. Rudin, W.: Analyse réelle et Complexe. Masson, Paris (1980)

    MATH  Google Scholar 

  52. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  53. Weiss, G.: Representation of shift-invariant operators on L 2 by H transfer functions: an elementary proof, a generalization, and a counterexample for L . Math. Control Signals Syst. 4, 193–203 (1991)

    Article  MATH  Google Scholar 

  54. Zhang, T.S.: Characterizations of the white noise test functionals and Hida distributions. Stoch. Rep. 41(1–2), 71–87 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alpay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpay, D., Levanony, D. Linear Stochastic Systems: A White Noise Approach. Acta Appl Math 110, 545–572 (2010). https://doi.org/10.1007/s10440-009-9461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9461-1

Keywords

Mathematics Subject Classification (2000)

Navigation