Skip to main content
Log in

Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Recently, a novel method based on the coding of partitions was used to determine a power series expansion for the reciprocal of the logarithmic function, viz. z/ln (1+z). Here we explain how this method can be adapted to obtain power series expansions for other intractable functions. First, the method is adapted to evaluate the Bernoulli numbers and polynomials. As a result, new integral representations and properties are determined for the former. Then via another adaptation of the method we derive a power series expansion for the function z s/ln s(1+z), whose polynomial coefficients A k (s) are referred to as the generalized reciprocal logarithm numbers because they reduce to the reciprocal logarithm numbers when s=1. In addition to presenting a general formula for their evaluation, this paper presents various properties of the generalized reciprocal logarithm numbers including general formulas for specific values of s, a recursion relation and a finite sum identity. Other representations in terms of special polynomials are also derived for the A k (s), which yield general formulas for the highest order coefficients. The paper concludes by deriving new results involving infinite series of the A k (s) for the Riemann zeta and gamma functions and other mathematical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kowalenko, V.: Properties and applications of the reciprocal logarithm numbers (submitted for publication)

  2. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  3. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic, London (1994). Alan Jeffrey (Ed.)

    MATH  Google Scholar 

  4. Kowalenko, V.: Towards a theory of divergent series and its importance to asymptotics. In: Recent Research Developments in Physics, vol. 2, pp. 17–68 (Transworld Research Network, Trivandrum, India, 2001)

  5. Kowalenko, V.: The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation. Bentham e-books (submitted for publication)

  6. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1973), p. 252

    Google Scholar 

  7. Lighthill, M.J.: Fourier Analysis and Generalised Functions, Student’s edn. Cambridge University Press, Cambridge (1975)

    Google Scholar 

  8. Gel’fand, I.M., Shilov, G.E.: Generalized Functions, vol. 1—Properties and Operations. Academic, New York (1964)

    Google Scholar 

  9. Kowalenko, V.: Exactification of the asymptotics for Bessel and Hankel functions. Appl. Math. Comput. 133, 487–518 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kowalenko, V., Frankel, N.E., Glasser, M.L., Taucher, T.: Generalised Euler-Jacobi Inversion Formula and Asymptotics beyond All Orders. London Mathematical Society Lecture Note, vol. 214. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  11. Kowalenko, V., Frankel, N.E.: Asymptotics for the Kummer function of Bose plasmas. J. Math. Phys. 35, 6179–6198 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kowalenko, V.: The non-relativistic charged Bose gas in a magnetic field II. Quantum properties. Ann. Phys. (N.Y.) 274, 165–250 (1999)

    Article  MATH  Google Scholar 

  13. Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Academic, London (1973)

    MATH  Google Scholar 

  14. Prudnikov, A.P., Marichev, O.I., Brychkov, Y.A.: Integrals and Series, vol. I: Elementary Functions. Gordon and Breach, New York (1986)

    Google Scholar 

  15. Munkhammar, J.: Integrating Factor. In: MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com//IntegratingFactor.html

  16. Weisstein, E.W.: Bell Number. In: Mathworld—A Wolfram Web Resource. http://mathworld.wolfram.com/BellNumber.html

  17. Roman, S.: The Umbral Calculus. Academic, New York (1984)

    MATH  Google Scholar 

  18. Weisstein, E.W.: Bernoulli Number. In: Mathworld—A Wolfram Web Resource. http://mathworld.wolfram.com/BernoulliNumber.html

  19. Sondow, J., Weisstein, E.W.: Harmonic number. In: MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com//HarmonicNumber.html

  20. Wolfram, S.: Mathematica—A System for Doing Mathematics by Computer. Addison-Wesley, Reading (1992)

    Google Scholar 

  21. Wu, M., Pan, H.: Sums of products of Bernoulli numbers of the second kind, arXiv:0709.2947v1 [math.NT], 19 Sep. 2007

  22. Weisstein, E.W.: Bernoulli number of the second kind. In: Mathworld—A Wolfram Web Resource. http://mathworld.wolfram.com/BernoulliNumberoftheSecondKind.html

  23. Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987)

    MATH  Google Scholar 

  24. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  25. Prudnikov, A.P., Marichev, O.I., Brychkov, Y.A.: Integrals and Series, vol. 3: More Special Functions. Gordon and Breach, New York (1990)

    Google Scholar 

  26. Weisstein, E.W.: Stirling number of the first kind. In: MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com//StirlingNumberoftheFirstKind.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kowalenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalenko, V. Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion. Acta Appl Math 106, 369–420 (2009). https://doi.org/10.1007/s10440-008-9304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9304-5

Keywords

Navigation