Skip to main content
Log in

Constant-Sign Solutions for Systems of Fredholm and Volterra Integral Equations: The Singular Case

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider the system of Fredholm integral equations

$$\begin{array}{l}\displaystyle u_{i}(t)=\int_{0}^{T}g_{i}(t,s)[h_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))+k_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))]ds,\\[8pt]\quad t\in[0,T],~1\leq i\leq n\end{array}$$

and also the system of Volterra integral equations

$$\begin{array}{l}\displaystyle u_{i}(t)=\int_{0}^{t}g_{i}(t,s)[h_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))+k_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))]ds,\\[8pt]\quad t\in[0,T],~1\leq i\leq n\end{array}$$

where T>0 is fixed and the nonlinearities h i (t,u 1,u 2,…,u n ) can be singular at t=0 and u j =0 where j∈{1,2,…,n}. Criteria are offered for the existence of constant-sign solutions, i.e., θ i u i (t)≥0 for t∈[0,1] and 1≤in, where θ i ∈{1,−1} is fixed. We also include examples to illustrate the usefulness of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D.: Singular Volterra integral equations. Appl. Math. Lett. 13, 115–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, R.P., O’Regan, D.: Singular integral equations arising in Homann flow. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 481–488 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Agarwal, R.P., O’Regan, D.: Volterra integral equations: the singular case. Hokkaido Math. J. 32, 371–381 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  5. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Constant-sign solutions of a system of Fredholm integral equations. Acta Appl. Math. 80, 57–94 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Eigenvalues of a system of Fredholm integral equations. Math. Comput. Model. 39, 1113–1150 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Triple solutions of constant sign for a system of Fredholm integral equations. Cubo 6, 1–45 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Constant-sign solutions of a system of integral equations: The semipositone and singular case. Asymptotic Anal. 43, 47–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Constant-sign solutions of a system of integral equations with integrable singularities. J. Integr. Equ. Appl. 19, 117–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Constant-sign solutions of a system of Volterra integral equations. Comput. Math. Appl. 54, 58–75 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonanno, G.: An existence theorem of positive solutions to a singular nonlinear boundary value problem. Comment. Math. Univ. Carol. 36, 609–614 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Bushell, P.J.: On a class of Volterra and Fredholm non-linear integral equations. Math. Proc. Camb. Philos. Soc. 79, 329–335 (1976)

    MATH  MathSciNet  Google Scholar 

  13. Bushell, P.J., Okrasiński, W.: Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel. Math. Proc. Camb. Philos. Soc. 106, 547–552 (1989)

    Article  MATH  Google Scholar 

  14. Bushell, P.J., Okrasiński, W.: Nonlinear Volterra integral equations with convolution kernel. J. Lond. Math. Soc. 41, 503–510 (1990)

    Article  MATH  Google Scholar 

  15. Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, San Diego (1973)

    MATH  Google Scholar 

  16. Corduneanu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  17. Dong, W.: Uniqueness of solutions for a class of non-linear Volterra integral equations without continuity. Appl. Math. Mech. 18, 1191–1196 (1997). (English edn.)

    Article  MATH  Google Scholar 

  18. Gripenberg, G.: Unique solutions of some Volterra integral equations. Math. Scand. 48, 59–67 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications, vol. 34. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  20. Karlin, S., Nirenberg, L.: On a theorem of P. Nowosad. J. Math. Anal. Appl. 17, 61–67 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meehan, M., O’Regan, D.: Positive solutions of singular integral equations. J. Integr. Equ. Appl. 12, 271–280 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meehan, M., O’Regan, D.: A note on singular Volterra functional-differential equations. Math. Proc. R. Ir. Acad. 100A, 73–84 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Meehan, M., O’Regan, D.: Positive solutions of Volterra integral equations using integral inequalities. J. Inequal. Appl. 7, 285–307 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nowosad, P.: On the integral equation \(\kappa f=\frac{1}{f}\) arising in a problem in communications. J. Math. Anal. Appl. 14, 484–492 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  25. O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integrodifferential Equations. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  26. Reynolds, D.W.: On linear singular Volterra integral equations of the second kind. J. Math. Anal. Appl. 103, 230–262 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, J., Gao, W., Zhang, Z.: Singular nonlinear boundary value problems arising in boundary layer theory. J. Math. Anal. Appl. 233, 246–256 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R.P., O’Regan, D. & Wong, P.J.Y. Constant-Sign Solutions for Systems of Fredholm and Volterra Integral Equations: The Singular Case. Acta Appl Math 103, 253–276 (2008). https://doi.org/10.1007/s10440-008-9234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9234-2

Keywords

AMS Subject Classifications

Navigation