Skip to main content
Log in

Finite-Dimensional Orthogonality Structures for Hall-Littlewood Polynomials

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We present a finite-dimensional system of discrete orthogonality relations for the Hall-Littlewood polynomials. A compact determinantal formula for the weights of the discrete orthogonality measure is formulated in terms of a Gaudin-type conjecture for the normalization constants of a dual system of orthogonality relations. The correctness of our normalization conjecture has been checked in some special cases: for Hall-Littlewood polynomials up to four variables (i), for the reduction to Schur polynomials (ii), and in a continuum limit in which the Hall-Littlewood polynomials degenerate into the Bethe Ansatz eigenfunctions of the Schrödinger operator for identical Bose particles on the circle with pairwise delta-potential interactions (iii).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4–6. Hermann, Paris (1968)

    Google Scholar 

  2. Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schroedinger model. Commun. Math. Phys. 154, 347–376 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Emsiz, E.: Affine Weyl groups and integrable systems with delta-potentials. Ph.D. Thesis, University of Amsterdam, Amsterdam (2006)

  4. Gaudin, M.: La fonction d’onde de Bethe. Masson, Paris (1983)

    MATH  Google Scholar 

  5. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Korepin, V.E.: Calculations of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  8. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. (2) 130, 1605–1616 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  9. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  10. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Comb. 45, Art. B45a, 40 pp. (electronic) (2000/01)

  11. Mattis, D.C. (ed.): The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)

    Google Scholar 

  12. Morris, A.O.: A survey of Hall-Littlewood functions and their application to representation theory. In: Foata, D. (ed.) Combinatoire et Représentation du Groupe Symétrique. Lecture Notes in Mathematics, vol. 579, pp. 136–154. Springer, Berlin (1977)

    Chapter  Google Scholar 

  13. Nelsen, K., Ram, A.: Kostka-Foulkes polynomials and Macdonald spherical functions. In: Wensley, C.D. (ed.) Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 307, pp. 325–370. Cambridge Univ. Press, Cambridge (2003)

    Google Scholar 

  14. van Diejen, J.F.: On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls. Ann. Henri Poincaré 5, 135–168 (2004)

    Article  MATH  Google Scholar 

  15. van Diejen, J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267, 451–476 (2006)

    Article  MATH  Google Scholar 

  16. van Diejen, J.F., Vinet, L.: The quantum dynamics of the compactified trigonometric Ruijsenaars-Schneider model. Commun. Math. Phys. 197, 33–74 (1998)

    Article  MATH  Google Scholar 

  17. Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of Bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115–1122 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. van Diejen.

Additional information

Work supported in part by the Anillo Ecuaciones Asociadas a Reticulados financed by the World Bank through the Programa Bicentenario de Ciencia y Tecnología, and by the Programa Reticulados y Ecuaciones of the Universidad de Talca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Diejen, J.F. Finite-Dimensional Orthogonality Structures for Hall-Littlewood Polynomials. Acta Appl Math 99, 301–308 (2007). https://doi.org/10.1007/s10440-007-9168-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9168-0

Keywords

Navigation