Skip to main content
Log in

About Asymptotic Behavior for a Transmission Problem in Hyperbolic Thermoelasticity

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a transmission problem in thermoelasticity with memory. We show the exponential decay of the solution in case of radially symmetric situations, as time goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasiadis, C., Stratis, I.G.: On some elliptic transmission problems. Ann. Polon. Math. 63(2), 137–154 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Balmès, E., Germès, S.: Tools for viscoelastic damping treatment design. Application to an automotive floor panel. In: ISMA Conference Proceedings (2002)

  3. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fatori, L.H., Lueders, E., Muñoz Rivera, J.E.: Transmission problem for hyperbolic thermoelastic systems. J. Therm. Stress. 26(7), 739–763 (2003)

    Article  Google Scholar 

  5. Fatori, L.H., Muñoz Rivera, J.E.: Energy decay for hyperbolic thermoelastic systems of memory type. Q. Appl. Math. 59(3), 441–458 (2001)

    MATH  Google Scholar 

  6. Ferry, J.D.: Mechanical properties of substances of high molecular weight; Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J. Am. Chem. Soc. 72, 37–46 (1953)

    Google Scholar 

  7. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1970)

    Google Scholar 

  8. Germès, S., van Harpe, F.: Model reduction and substructuring for computing responses of structures containing frequency-dependent viscoelastic materials. In: Rao, V.S. (ed.) Smart Structures and Materials 2002: Modeling, Signal Processing, and Control. Proceedings of SPIE, vol. 4693, pp. 81–91. SPIE, Bellingham (2002)

    Google Scholar 

  9. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henry, D.B., A. Perissinitto, Jr., Lopes, O.: On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal. 21(1), 65–75 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1976)

    MATH  Google Scholar 

  12. Jiang, S., Muñoz Rivera, J.E., Racke, R.: Asymptotic stability and global existence in thermoelasticity with symmetry. Q. Appl. Math. 56(2), 259–275 (1998)

    MATH  Google Scholar 

  13. Kim, J.U.: A boundary thin obstacle problem for a wave equation. Commun. Partial Differ. Equ. 14(8-9), 1011–1026 (1989)

    Article  MATH  Google Scholar 

  14. Koch, H.: Slow decay in linear thermoelasticity. Q. Appl. Math. 58(4), 601–612 (2000)

    MATH  Google Scholar 

  15. Kovacs, A.J.: La contraction isotherme du volume des polymères amorphes. J. Polym. Sci. 30(121), 131–147 (1958)

    Article  Google Scholar 

  16. Ladyzhenskaya, O., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968) (Translated from the Russian by Scripta Technica, L. Ehrenpreis (ed.))

    MATH  Google Scholar 

  17. Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148(3), 179–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions, J.-L.: Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  19. Lions, J.-L.: Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Masson, Paris (1988)

    Google Scholar 

  20. Marzocchi, A., Muñoz Rivera, J.E., Naso, M.G.: Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity. Math. Methods Appl. Sci. 25(11), 955–980 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marzocchi, A., Muñoz Rivera, J.E., Naso, M.G.: Transmission problem in thermoelasticity with symmetry. IMA J. Appl. Math. 68(1), 23–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Muki, R., Sternberg, E.: On transient thermal stresses in viscoelastic material with temperature dependent properties. J. Appl. Mech. 28, 193–207 (1961)

    MATH  MathSciNet  Google Scholar 

  23. Muñoz Rivera, J.E., Portillo Oquendo, H.: The transmission problem of viscoelastic waves. Acta Appl. Math. 62(1), 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Muñoz Rivera, J.E., Portillo Oquendo, H.: The transmission problem for thermoelastic beams. J. Therm. Stress. 24(12), 1137–1158 (2001)

    Article  Google Scholar 

  25. Muñoz Rivera, J.E., Portillo Oquendo, H.: Transmission problem for viscoelastic beams. Adv. Math. Sci. Appl. 12(1), 1–20 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Nielsen, L.E., Landel, R.F.: Mechanical Properties of Polymers and Composites. Marcel Dekker, New York (1993)

    Google Scholar 

  27. Oh, K.: A theoretical and experimental study of modal interactions in metallic and laminated composite plates. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA (1994)

  28. Portillo Oquendo, H.: Viscoelastic boundary stabilization for a transmission problem in elasticity. IMA J. Appl. Math. 68(1), 83–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rao, M.: Recent applications of viscoelastic damping for noise control term in automobiles and commercial airplanes. J. Sound Vibr. 262(3), 457–474 (2003)

    Article  Google Scholar 

  30. Roy, N., Germès, S., Lefebvre, B., Balmès, E.: Damping allocation in automotive structures using reduced models. In: Sas, P., de Munck, M. (eds.) Proceedings of ISMA 2006, International Conference on Noise and Vibrating Engineering, pp. 3915–3924. Katholieke Universiteit Leuven, Leuven (2006)

    Google Scholar 

  31. Staffans, O.J.: On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11(5), 793–812 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tanner, R.I.: Engineering Rheology. Oxford University Press, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime E. Muñoz Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz Rivera, J.E., Naso, M.G. About Asymptotic Behavior for a Transmission Problem in Hyperbolic Thermoelasticity. Acta Appl Math 99, 1–27 (2007). https://doi.org/10.1007/s10440-007-9152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9152-8

Keywords

Mathematics Subject Classification (2000)

Navigation