Skip to main content

Advertisement

Log in

A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wearable Chair (WC) and Squat-assist (SA) exoskeletons. Evaluations mainly included assessment of muscular demands in the thigh, shank, and upper/lower back regions. Both types of devices were found to lessen muscular demands in the lower body by 30–90%. WCs also reduced low-back demands (~ 37%) and plantar pressure (54–80%) but caused discomfort/unsafe feeling in participants. To generalize outcomes, we suggest standardizing approaches used for evaluating the devices. Along with addressing low adoption through design upgrades (e.g., ground and body supports/attachments), we recommend that researchers thoroughly evaluate temporal effects on muscle fatigue, metabolic rate, and stability of wearers. Although lower-limb exoskeletons were found to be beneficial, discrepancies in experimental protocols (posture/task/measures) were discovered. We also suggest simulating more realistic conditions, such as walking/sitting interchangeability for WCs and lifting loads for SA devices. The presented outcomes could help improve the design/evaluation approaches, and implementation of lower limb wearable devices across industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alemi, M. M. Biomechanical assessment and metabolic evaluation of passive lift-assistive exoskeletons during repetitive lifting tasks. Diss. Virginia Tech. 5:1–144, 2019.

    Google Scholar 

  2. Alemi, M. M., J. Geissinger, A. A. Simon, S. E. Chang, and A. T. Asbeck. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. J. Electromyogr. Kinesiol. 47:25–34, 2019.

    Article  PubMed  Google Scholar 

  3. Alemi, M. M., S. Madinei, S. Kim, D. Srinivasan, and M. A. Nussbaum. Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting. Hum. Factors. 62:458–474, 2020.

    Article  PubMed  Google Scholar 

  4. Ali, A., V. Fontanari, W. Schmoelz, and S. K. Agrawal. Systematic review of back-support exoskeletons and soft robotic suits. Front. Bioeng. Biotechnol. 9:1–15, 2021.

    Article  CAS  Google Scholar 

  5. Antle, D. M., N. Vézina, K. Messing, and J. N. Côté. Development of discomfort and vascular and muscular changes during a prolonged standing task. Occup. Ergon. 11:21–33, 2013.

    Article  Google Scholar 

  6. Ármannsdóttir, A. L., P. Beckerle, J. C. Moreno, E. H. F. van Asseldonk, M. T. Manrique-Sancho, A. J. del-Ama, J. F. Veneman, and K. Briem. Assessing the involvement of users during development of lower limb wearable robotic exoskeletons: a survey study. Hum. Factors. 62:351–364, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bär, M., T. Luger, R. Seibt, M. A. Rieger, and B. Steinhilber. Using a passive back exoskeleton during a simulated sorting task: influence on muscle activity, posture, and heart rate. Hum. Factors. 1:1–16, 2022.

    Google Scholar 

  8. Bequette, B., A. Norton, E. Jones, and L. Stirling. Physical and cognitive load effects due to a powered lower-body exoskeleton. Hum. Factors. 62:411–423, 2020.

    Article  PubMed  Google Scholar 

  9. De Bock, S., J. Ghillebert, R. Govaerts, B. Tassignon, C. Rodriguez-Guerrero, S. Crea, J. Veneman, J. Geeroms, R. Meeusen, and K. De Pauw. Benchmarking occupational exoskeletons: an evidence mapping systematic review. Appl. Ergon.98:103582, 2022.

    Article  PubMed  Google Scholar 

  10. Bureau of Labor Statistics. Projections overview and highlights, 2020–30, 2021.

  11. Bureau of Labor Statistics. Survey of Occupational Injuries and Illnesses Data, 2021.

  12. Butler, T. Exoskeleton technology. Ergonomics. 61:32–36, 2016.

    Google Scholar 

  13. Chae, U. R., K. Kim, J. Choi, D. J. Hyun, J. Yun, G. H. Lee, Y. G. Hyun, J. Lee, and M. Chung. Systematic usability evaluation on two harnesses for a wearable chairless exoskeleton. Int. J. Ind. Ergon.84:103162, 2021.

    Article  Google Scholar 

  14. Chester, M. R., M. J. Rys, and S. A. Konz. Leg swelling, comfort and fatigue when sitting, standing, and sit/standing. Int. J. Ind. Ergon. 29:289–296, 2002.

    Article  Google Scholar 

  15. Coenen, P., S. Parry, L. Willenberg, J. W. Shi, L. Romero, D. M. Blackwood, G. N. Healy, D. W. Dunstan, and L. M. Straker. Associations of prolonged standing with musculoskeletal symptoms—a systematic review of laboratory studies. Gait Posture. 58:310–318, 2017.

    Article  PubMed  Google Scholar 

  16. Du, Z., Z. Yan, T. Huang, O. Bai, Q. Huang, and B. Han. Mechanical design with experimental verification of a lightweight exoskeleton chair. J. Bionic Eng. 18:319–332, 2021.

    Article  Google Scholar 

  17. Duan, S., C. Wang, Y. Li, L. Zhang, Y. Yuan, and X. Wu. A quantifiable muscle fatigue method based on sEMG during dynamic contractions for lower limb exoskeleton. In 2020 IEEE Int. Conf. Real-Time Comput. Robot. RCAR 2020, 2020, pp. 20–25.

  18. Fasulo, L., A. Naddeo, and N. Cappetti. A study of classroom seat (dis)comfort: relationships between body movements, center of pressure on the seat, and lower limbs’ sensations. Appl. Ergon. 74:233–240, 2019.

    Article  PubMed  Google Scholar 

  19. Gams, A., T. Petric, T. Debevec, and J. Babic. Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans. Biomed. Eng. 60:1636–1644, 2013.

    Article  PubMed  Google Scholar 

  20. Garcia, M. G., T. Läubli, and B. J. Martin. Long-term muscle fatigue after standing work. Hum. Factors. 57:1162–1173, 2015.

    Article  PubMed  Google Scholar 

  21. Groos, S., M. Fuchs, and K. Kluth. Determination of the Subjective Strain Experiences During Assembly Activities Using the Exoskeleton “Chairless Chair”. Cham, Springer, 2020, pp. 72–82.

  22. Gull, M. A., S. Bai, and T. Bak. A review on design of upper limb exoskeletons. Robotics. 9:1–35, 2020.

    Article  Google Scholar 

  23. Halim, I., A. R. Omar, A. M. Saman, and I. Othman. Assessment of muscle fatigue associated with prolonged standing in the workplace. Saf. Health Work. 3:31–42, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamza, M. F., R. A. R. Ghazilla, B. B. Muhammad, and H. J. Yap. Balance and stability issues in lower extremity exoskeletons: a systematic review. Biocybern. Biomed. Eng. 40:1666–1679, 2020.

    Article  Google Scholar 

  25. Han, Y., Y. Liu, and W. Zhang. Design of a passive exoskeleton chair with an auxiliary support mechanism for assembly tasks. In 2021 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2021, 2021, pp. 199–203.

  26. Hidayah, R., D. Sui, K. A. Wade, B.-C. Chang, and S. Agrawal. Passive knee exoskeletons in functional tasks: biomechanical effects of a SpringExo coil-spring on squats. Wear. Technol. 2:e7, 2021.

    Article  Google Scholar 

  27. Higgins, J. P. T., J. Savović, M. J. Page, R. G. Elbers, and J. A. C. Sterne. Assessing risk of bias in a randomized trial. In: Cochrane Handbook for Systematic Reviews of Interventions. Hoboken: Wiley, 2019, pp. 205–228.

  28. Hoffmann, N., G. Prokop, and R. Weidner. Methodologies for evaluating exoskeletons with industrial applications. Ergonomics. 65(2):276–295, 2021.

    Article  PubMed  Google Scholar 

  29. Hong, Y. W., Y. King, W. Yeo, C. Ting, Y. Chuah, J. Lee, and E.-T. Chok. Lower extremity exoskeleton : review and challenges surrounding the technology and its role in rehabilitation of lower limbs. Aust. J. Basic Appl. Sci. 7:520–524, 2013.

    Google Scholar 

  30. Jung, K. S., J. H. Jung, T. S. In, and H. Y. Cho. Effects of prolonged sitting with slumped posture on trunk muscular fatigue in adolescents with and without chronic lower back pain. Medicine. 57:1–8, 2021.

    Google Scholar 

  31. Kawahira, H., R. Nakamura, Y. Shimomura, and T. Oshiro. Clinical use of a wearable lower limb support device for surgeries involving long periods of standing. J. Jpn. Soc. Comput. Aid. Surg. 20(3):121–125, 2018.

    Article  Google Scholar 

  32. Kermavnar, T., A. W. de Vries, M. P. de Looze, and L. W. O’Sullivan. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Ergonomics. 64:685–711, 2021.

    Article  PubMed  Google Scholar 

  33. Kim, H. J., J. Noh, and W. Yang. Knee-assistive robotic exoskeleton (KARE-1) using a conditionally singular mechanism for industrial field applications. Appl. Sci. 10:1–16, 2020.

    Google Scholar 

  34. Kim, S., M. A. Nussbaum, M. I. Mokhlespour Esfahani, M. M. Alemi, B. Jia, and E. Rashedi. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II—“Unexpected” effects on shoulder motion, balance, and spine loading. Appl. Ergon. 70:323–330, 2018.

    Article  PubMed  Google Scholar 

  35. Kim, S., M. A. Nussbaum, M. Smets, and S. Ranganathan. Effects of an arm-support exoskeleton on perceived work intensity and musculoskeletal discomfort: an 18-month field study in automotive assembly. Am. J. Ind. Med. 64(11):905–914, 2021.

    Article  PubMed  Google Scholar 

  36. Kong, Y. K., K. H. Choi, M. U. Cho, S. Y. Kim, M. J. Kim, J. W. Shim, S. S. Park, K. R. Kim, M. T. Seo, H. S. Chae, and H. H. Shim. Ergonomic assessment of a lower-limb exoskeleton through electromyography and anybody modeling system. Int. J. Environ. Res. Public Health. 19:8088, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kong, Y. K., C. W. Park, M. U. Cho, S. Y. Kim, M. J. Kim, D. J. Hyun, K. Bae, J. K. Choi, S. M. Ko, and K. H. Choi. Guidelines for working heights of the lower-limb exoskeleton (CEX) based on ergonomic evaluations. Int. J. Environ. Res. Public Health. 18(10):5199, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuber, P. M., M. Abdollahi, M. M. Alemi, and E. Rashedi. A systematic review on evaluation strategies for field assessment of upper-body industrial exoskeletons: current practices and future trends. Ann. Biomed. Eng. 50:1203–1231, 2022.

    Article  PubMed  Google Scholar 

  39. Kuber, P. M., and E. Rashedi. Product ergonomics in industrial exoskeletons: potential enhancements for workforce safety and efficiency. Theor. Issues Ergon. Sci. 22:729–752, 2020.

    Article  Google Scholar 

  40. Kuber, P. M., and E. Rashedi. Towards reducing risk of injury in nursing: design and analysis of a new passive exoskeleton for torso twist assist. In Proc. Int. Symp. Hum. Factors Ergon. Heal. Care, 2021.

  41. Kuber, P. M., and E. Rashedi. Investigating effects of adjustability features in the design of forklift backrests: a pilot study. Int. J. Hum. Factors Ergon. 9:350, 2022.

    Article  Google Scholar 

  42. Kwok, T. H., and C. C. L. Wang. Shape optimization for human-centric products with standardized components. CAD Comput. Aid. Des. 52:40–50, 2014.

    Article  Google Scholar 

  43. Kwon, Y., J. W. Kim, J. H. Heo, H. M. Jeon, E. B. Choi, and G. M. Eom. The effect of sitting posture on the loads at cervico-thoracic and lumbosacral joints. Technol. Heal. Care. 26:S409–S418, 2018.

    Article  Google Scholar 

  44. Li, B., B. Yuan, S. Tang, Y. Mao, D. Zhang, C. Huang, and B. Tan. Biomechanical design analysis and experiments evaluation of a passive knee-assisting exoskeleton for weight-climbing. Ind. Robot. 45:436–445, 2018.

    Article  Google Scholar 

  45. Li, Y., and J. Gan. Multidisciplinary evaluation metrics for the usability of wearable chairs. In HORA 2022 - 4th Int. Congr. Human-Computer Interact. Optim. Robot. Appl. Proc., 2–5, 2022.

  46. Li, Z., T. Zhang, T. Xue, Z. Du, and O. Bai. Effect evaluation of a wearable exoskeleton chair based on surface EMG. In Chinese Control Conf. CCC 2019–July, 2019, pp. 4638–4642.

  47. Liberty Mutual. Liberty Mutual Workplace Safety Index—Risk Control from Liberty Mutual Insurance, 1–2, 2021.

  48. Luger, T., T. J. Cobb, R. Seibt, M. A. Rieger, and B. Steinhilber. Subjective evaluation of a passive lower-limb industrial exoskeleton used during simulated assembly. IISE Trans. Occup. Ergon. Hum. Factors. 7:175–184, 2019.

    Article  Google Scholar 

  49. Luger, T., T. J. Cobb, R. Seibt, M. A. Rieger, and B. Steinhilber. Subjective evaluation of a passive lower-limb industrial exoskeleton used during simulated assembly. IISE Trans. Occup. Ergon. Hum. Factors. 7:175–184, 2019.

    Article  Google Scholar 

  50. Luger, T., R. Seibt, T. J. Cobb, M. A. Rieger, and B. Steinhilber. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Appl. Ergon. 80:152–160, 2019.

    Article  PubMed  Google Scholar 

  51. Mcfarland, T., and S. Fischer. Considerations for industrial use: a systematic review of the impact of active and passive upper limb exoskeletons on physical exposures. IISE Trans. Occup. Ergon. Hum. Factors. 7:322–347, 2019.

    Article  Google Scholar 

  52. Ogunseiju, O., N. Gonsalves, A. Akanmu, and C. Nnaji. Subjective evaluation of passive back-support exoskeleton for flooring work. ASC. 2021(2):10–17, 2021.

    Google Scholar 

  53. Onofrejova, D., M. Balazikova, J. Glatz, Z. Kotianova, and K. Vaskovicova. Ergonomic assessment of physical load in slovak industry using wearable technologies. Appl. Sci. 12(7):3607, 2022.

    Article  CAS  Google Scholar 

  54. Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, D. Moher, and P. R. I. S. M. A. The. statement: an updated guideline for reporting systematic reviews. BMJ. 372:2021, 2020.

    Google Scholar 

  55. Picchiotti, M. T., E. B. Weston, G. G. Knapik, J. S. Dufour, and W. S. Marras. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Appl. Ergon. 75:1–7, 2019.

    Article  PubMed  Google Scholar 

  56. Pillai, M. V., L. Van Engelhoven, and H. Kazerooni. Evaluation of a lower leg support exoskeleton on floor and below hip height panel work. Hum. Factors. 62:489–500, 2020.

    Article  PubMed  Google Scholar 

  57. Poirson, E. Development of an acceptance model for occupational exoskeletons and application for a passive upper limb device. IISE Trans. Occup. Ergon. Hum. Factors. 5838:291–301, 2019.

    Google Scholar 

  58. Ranaweera, R. K. P. S., R. A. R. C. Gopura, T. S. S. Jayawardena, and G. K. I. Mann. Development of a passively powered knee exoskeleton for squat lifting. J. Robot. Netw. Artif. Life. 5:45, 2018.

    Article  Google Scholar 

  59. Rashedi, E., K. Khalaf, M. R. Nassajian, B. Nasseroleslami, and M. Parnianpour. How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4–L5 level. Proc. Inst. Mech. Part H J. Eng. Part Eng. Med. 224:487–501, 2010.

    Article  CAS  Google Scholar 

  60. Rashedi, E., S. Kim, M. A. Nussbaum, and M. J. Agnew. Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics. 57:1864–1874, 2014.

    Article  PubMed  Google Scholar 

  61. Rashedi, E., and M. A. Nussbaum. A review of occupationally–relevant models of localised muscle fatigue. Int. J. Hum. factors Model. Simul. 5:61–80, 2015.

    Article  Google Scholar 

  62. Sado, F., H. J. Yap, R. A. R. Ghazilla, and N. Ahmad. Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works. Mechatronics. 63:1–20, 2019.

    Article  Google Scholar 

  63. Schmalz, T., A. Colienne, E. Bywater, L. Fritzsche, C. Gärtner, M. Bellmann, S. Reimer, and M. Ernst. A passive back-support exoskeleton for manual materials handling: reduction of low back loading and metabolic effort during repetitive lifting. IISE Trans. Occup. Ergon. Hum. Factors. 10:7–20, 2022.

    Article  PubMed  Google Scholar 

  64. Schoenfeld, B. J. Squatting kinematics and kinetics and their application to exercise performance. J. Strength Cond. Res. 1:3497–3506, 2010.

    Article  Google Scholar 

  65. Scholz, J. P., and G. Schöner. The uncontrolled manifold concept: identifying control variables for a functional task. Exp. brain Res. 126:289–306, 1999.

    Article  CAS  PubMed  Google Scholar 

  66. Seimetz, C., D. Tan, R. Katayama, and T. Lockhart. A comparison between methods of measuring postrual stability: Force plates versus accelerometers. Biomed. Sci. Instrum. 48:386–392, 2012.

    PubMed  PubMed Central  Google Scholar 

  67. Seo, A., M. Kakehashi, S. Tsuru, and F. Yoshinaga. Leg swelling during continuous standing and sitting work without restricting leg movement. J. Occup. Health. 38:186–189, 1996.

    Article  Google Scholar 

  68. Spada, S., L. Ghibaudo, C. Carnazzo, M. Di Pardo, D. S. Chander, L. Gastaldi, and M. P. Cavatorta. Physical and virtual assessment of a passive exoskeleton. In: Proceedings of the 20th Congress of the International Ergonomics Association. Cham: Springer, 2019, pp. 247–257.

  69. Srinivasan, D., K. E. Sinden, S. E. Mathiassen, and J. N. Côté. Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task. Eur. J. Appl. Physiol. 116:2357–2365, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Steinhilber, B., R. Seibt, M. A. Rieger, and T. Luger. Postural control when using an industrial lower limb exoskeleton: impact of reaching for a working tool and external perturbation. Hum. Factors. 64:635–648, 2022.

    Article  PubMed  Google Scholar 

  71. Tetteh, E., M. S. Hallbeck, and G. A. Mirka. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure. Appl. Ergon.100:103646, 2022.

    Article  PubMed  Google Scholar 

  72. Tu, Y., A. Zhu, J. Song, X. Zhang, and G. Cao. Design and experimental evaluation of a lower-limb exoskeleton for assisting workers with motorized tuning of squat heights. IEEE Trans. Neural Syst. Rehabil. Eng. 30:184–193, 2022.

    Article  PubMed  Google Scholar 

  73. Wang, Z., X. Wu, Y. Zhang, C. Chen, S. Liu, Y. Liu, A. Peng, and Y. Ma. A Semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting. Front. Neurorobot. 15:1–12, 2021.

    Article  Google Scholar 

  74. Wehner, M., D. Rempel, and H. Kazerooni. Lower extremity exoskeleton reduces back forces in lifting. Proc. ASME Dyn. Syst. Control Conf. 2009(DSCC2009):961–968, 2010.

    Google Scholar 

  75. Wijegunawardana, I. D., M. B. K. Kumara, H. H. M. J. De Silva, P. K. P. Viduranga, R. K. P. S. Ranaweera, R. A. R. C. Gopura, and D. G. K. Madusanka. ChairX: a robotic exoskeleton chair for industrial workers. In IEEE Int. Conf. Rehabil. Robot., June, 2019, pp. 587–592.

  76. Yan, Z., B. Han, Z. Du, T. Huang, O. Bai, and A. Peng. Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers. Biocybern. Biomed. Eng. 41:221–238, 2021.

    Article  Google Scholar 

  77. Yu, S., T. H. Huang, D. Wang, B. Lynn, D. Sayd, V. Silivanov, Y. S. Park, Y. Tian, and H. Su. Design and control of a high-torque and highly backdrivable hybrid soft exoskeleton for knee injury prevention during squatting. IEEE Robot. Autom. Lett. 4:4579–4586, 2019.

    Article  Google Scholar 

  78. Zheng, Y., Y. Wang, and J. Liu. Analysis and experimental research on stability characteristics of squatting posture of wearable lower limb exoskeleton robot. Futur. Gener. Comput. Syst. 125:352–363, 2021.

    Article  Google Scholar 

  79. Zhu, A., Z. Shen, H. Shen, and J. Song. Design and preliminary experimentation of passive weight-support exoskeleton. In 2018 IEEE Int. Conf. Inf. Autom. ICIA 2018, vol. 1, 2018, pp. 761–765.

Download references

Funding

Internal resources at the Rochester Institute of Technology supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Rashedi.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interest in the work presented in this article.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Table 5.

Table 5 A summary of risk of bias for the included articles including B1: Bias arising from randomization process, B2: Bias due to deviations from intended interventions, B3: Bias due to missing outcome data, B4: Bias in measurement of the outcome, B5: Bias in selection of the reported result. The articles have been assessed with the following conventions: Low risk of bias ( +), Unclear risk of bias (?), High risk of bias ( −) (Adapted from 54)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuber, P.M., Alemi, M.M. & Rashedi, E. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions. Ann Biomed Eng 51, 1665–1682 (2023). https://doi.org/10.1007/s10439-023-03242-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03242-w

Keywords

Navigation