Skip to main content

Advertisement

Log in

Cytoskeletal Remodeling and Gap Junction Translocation Mediates Blood–Brain Barrier Disruption by Non-invasive Low-Voltage Pulsed Electric Fields

  • S.I.: Electroporation for Medical Applications and Biotechnology
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High-voltage pulsed electric fields (HV-PEF) delivered with invasive needle electrodes for electroporation applications is known to induce off-target blood–brain barrier (BBB) disruption. In this study, we sought to determine the feasibility of minimally invasive PEF application to produce BBB disruption in rat brain and identify the putative mechanisms mediating the effect. We observed dose-dependent presence of Evans Blue (EB) dye in rat brain when PEF were delivered with a skull mounted electrode used for neurostimulation application. Maximum region of dye uptake was observed while using 1500 V, 100 pulses, 100 µs and 10 Hz. Results of computational models suggested that the region of BBB disruption was occurring at thresholds of 63 V/cm or higher; well below intensity levels for electroporation. In vitro experiments recapitulating this effect with human umbilical vein endothelial cells (HUVEC) demonstrated cellular alterations that underlie BBB manifests at low-voltage high-pulse conditions without affecting cell viability or proliferation. Morphological changes in HUVECs due to PEF were accompanied by disruption of actin cytoskeleton, loss of tight junction protein—ZO-1 and VE-Cadherin at cell junctions and partial translocation into the cytoplasm. Uptake of propidium iodide (PI) in PEF treated conditions is less than 1% and 2.5% of total number of cells in high voltage (HV) and low-voltage (LV) groups, respectively, implying that BBB disruption to be independent of electroporation under these conditions. 3-D microfabricated blood vessel permeability was found to increase significantly following PEF treatment and confirmed with correlative cytoskeletal changes and loss of tight junction proteins. Finally, we show that the rat brain model can be scaled to human brains with a similar effect on BBB disruption characterized by electric field strength (EFS) threshold and using a combination of two bilateral HD electrode configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cemazar, M., C. S. Parkins, A. L. Holder, D. J. Chaplin, G. M. Tozer, and G. Sersa. Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy. Br. J. Cancer. 84(4):565–570, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanthou, C., S. Kranjc, G. Sersa, G. Tozer, A. Zupanic, and M. Cemazar. The endothelial cytoskeleton as a target of electroporation-based therapies. Mol. Cancer Ther. 5(12):3145–3152, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Corovic, S., B. Markelc, M. Dolinar, M. Cemazar, and T. Jarm. Modeling of microvascular permeability changes after electroporation. PLoS ONE. 10(3):e0121370, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellard, E., et al. Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization. J. Control. Release. 163(3):396–403, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Markelc, B., et al. Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J. Control. Release. 276(October 2017):30–41, 2018.

    Article  CAS  PubMed  Google Scholar 

  6. Srimathveeravalli, G., et al. Reversible electroporation-mediated liposomal doxorubicin delivery to tumors can be monitored with 89 Zr-labeled reporter nanoparticles. Mol. Imaging. 17:1–9, 2018.

    Article  CAS  Google Scholar 

  7. Kodama, H., et al. Electroporation-induced changes in tumor vasculature and microenvironment can promote the delivery and increase the efficacy of sorafenib nanoparticles. Bioelectrochemistry.130:107328, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Richard Daneman, A. P. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7(1):a020412, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hajal, C., B. Le Roi, R. D. Kamm, and B. M. Maoz. Biology and models of the blood–brain barrier. Annu. Rev. Biomed. Eng. 23:359–384, 2021.

    Article  CAS  PubMed  Google Scholar 

  10. Wong, A. D., M. Ye, A. F. Levy, J. D. Rothstein, D. E. Bergles, and P. C. Searson. The blood–brain barrier: an engineering perspective. Front. Neuroeng. 6(JUL):1–22, 2013.

    Google Scholar 

  11. Luo, H., and E. V. Shusta. Blood–brain barrier modulation to improve glioma drug delivery. Pharmaceutics. 12(11):1–12, 2020.

    Article  CAS  Google Scholar 

  12. Bonakdar, M., P. M. Graybill, and R. V. Davalos. A microfluidic model of the blood–brain barrier to study permeabilization by pulsed electric fields. RSC Adv. 7(68):42811–42818, 2017.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Quintero, S. V., A. Datta, R. Amaya, M. Elwassif, M. Bikson, and J. M. Tarbell. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. J. Neural Eng. 7(1):16005, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Hjouj, M., et al. MRI study on reversible and irreversible electroporation induced blood–brain barrier disruption. PLoS ONE. 7(8):1–9, 2012.

    Article  Google Scholar 

  15. Garcia, P. A., et al. 7.0-T magnetic resonance imaging characterization of acute blood–brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS ONE. 7(11):1–8, 2012.

    Article  Google Scholar 

  16. Sharabi, S., et al. Dynamic effects of point source electroporation on the rat brain tissue. Bioelectrochemistry. 99:30–39, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Sharabi, S., D. Last, D. Daniels, S. Liraz Zaltsman, and Y. Mardor. The effects of point-source electroporation on the blood–brain barrier and brain vasculature in rats: an MRI and histology study. Bioelectrochemistry. 134:107521, 2020.

    Article  CAS  PubMed  Google Scholar 

  18. Sharabi, S., et al. The application of point source electroporation and chemotherapy for the treatment of glioma: a randomized controlled rat study. Sci. Rep. 10(1):1–12, 2020.

    Article  Google Scholar 

  19. Latouche, E. L., et al. High-frequency irreversible electroporation for intracranial meningioma: a feasibility study in a spontaneous canine tumor model. Technol. Cancer Res. Treat. 17:1–10, 2018.

    Article  Google Scholar 

  20. Lorenzo, M. F., et al. Temporal characterization of blood–brain barrier disruption with high-frequency electroporation. Cancers. 11(12):2019, 1850.

    Google Scholar 

  21. Lorenzo, M. F., et al. An investigation for large volume, focal blood–brain barrier disruption with high-frequency pulsed electric fields. Pharmaceuticals. 14(12):1–22, 2021.

    Article  Google Scholar 

  22. Shu, T., et al. Lethal electric field thresholds for cerebral cells with irreversible electroporation and H-FIRE protocols: an in vitro three-dimensional cell model study. J. Biomech. Eng. 144(10):1–9, 2022.

    Article  Google Scholar 

  23. Sharabi, S., et al. Transient blood–brain barrier disruption is induced by low pulsed electrical fields in vitro: an analysis of permeability and trans-endothelial electric resistivity. Drug Deliv. 26(1):459–469, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharabi, S., et al. Non-invasive low pulsed electrical fields for inducing BBB disruption in mice—feasibility demonstration. Pharmaceutics. 13(2):1–15, 2021.

    Article  Google Scholar 

  25. Polacheck, W. J., M. L. Kutys, J. B. Tefft, and C. S. Chen. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14(5):1425–1454, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Datta, A., V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2(4):201–207, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Edemann-Callesen, H., et al. Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit. Transl. Psychiatry. 8(1):11, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hadar, R., et al. Prevention of schizophrenia deficits via non-invasive adolescent frontal cortex stimulation in rats. Mol. Psychiatry. 25(4):896–905, 2020.

    Article  PubMed  Google Scholar 

  29. Song, W., D. Q. Truong, M. Bikson, and J. H. Martin. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. J. Neurophysiol. 113(7):2801–2811, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bikson, M., et al. Modeling sequence and quasi-uniform assumption in computational neurostimulation. Prog. Brain Res. 222:1–23, 2015.

    Article  PubMed  Google Scholar 

  31. Unal, G., et al. Adaptive current-flow models of ECT: explaining individual static impedance, dynamic impedance, and brain current density. Brain Stimul. 14(5):1154–1168, 2021.

    Article  PubMed  Google Scholar 

  32. Neal, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59(4):1076–1085, 2012.

    Article  PubMed  Google Scholar 

  33. Šel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52(5):816–827, 2005.

    Article  PubMed  Google Scholar 

  34. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online. 2011. https://doi.org/10.1186/1475-925X-10-34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bikson, M., et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9(5):641–661, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khadka, N., D. Q. Truong, P. Williams, J. H. Martin, and M. Bikson. The Quasi-uniform assumption for Spinal Cord Stimulation translational research. J. Neurosci. Methods.328(September):108446, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rubin, L. L., and J. M. Staddon. The cell biology of the blood–brain barrier. Annu. Rev. Neurosci. 22(1):11–28, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Obermeier, B., R. Daneman, and R. M. Ransohoff. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19(12):1584–1596, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai, P. S., et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29(46):14553–14570, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vanlandewijck, M., et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 554(7693):475–480, 2018.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, X., et al. LC–MS-MS quantitative determination of gefitinib in human serum and cerebrospinal fluid. Chromatographia. 74(1–2):41–49, 2011.

    Article  CAS  Google Scholar 

  42. Tan, J., M. Li, W. Zhong, C. Hu, Q. Gu, and Y. Xie. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: a direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model. Oncotarget. 8(58):98771–98781, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stemmler, H.-J., M. Schmitt, A. Willems, H. Bernhard, N. Harbeck, and V. Heinemann. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood–brain barrier. Anticancer Drugs. 18(1):23–28, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Rosenblatt, S., J. D. Chanley, H. Sobotka, and M. R. Kaufman. Interrelationships between electroshock, the blood–brain barrier, and catecholamines. J. Neurochem. 5(2):172–176, 1960.

    Article  CAS  PubMed  Google Scholar 

  45. Bolwig, T. G., M. M. Hertz, O. B. Paulson, H. Spotoft, and O. J. Rafaelsen. The permeability of the blood–brain barrier during electrically induced seizures in man. Eur. J. Clin. Investig. 7(2):87–93, 1977.

    Article  CAS  Google Scholar 

  46. Pudenz, R. H., L. A. Bullara, D. Dru, and A. Talalla. Electrical stimulation of the brain. II. Effects on the blood–brain barrier. Surg. Neurol. 4(2):265–270, 1975.

    CAS  PubMed  Google Scholar 

  47. Elwassif, M. M., Q. Kong, and M. Vazquez. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers Related content Bio-heat transfer model of deep brain stimulation. J. Neural Eng.7(1):016005, 2010.

    Article  Google Scholar 

  48. Cancel, L. M., K. Arias, M. Bikson, and J. M. Tarbell. Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect. Sci. Rep. 8(1):9265, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shin, D. W., et al. In vivo modulation of the blood–brain barrier permeability by transcranial direct current stimulation (tDCS). Ann. Biomed. Eng. 48(4):1256–1270, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bahr-Hosseini, M., and M. Bikson. Neurovascular-modulation: a review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimul. 14(4):837–847, 2021.

    Article  PubMed  Google Scholar 

  51. Partridge, B. R., et al. High-frequency irreversible electroporation (H-FIRE) induced blood–brain barrier disruption is mediated by cytoskeletal remodeling and changes in tight junction protein regulation. Biomedicines. 10(6):1384, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meulenberg, C. J. W., V. Todorovic, and M. Cemazar. Differential cellular effects of electroporation and electrochemotherapy in monolayers of human microvascular endothelial cells. PLoS ONE. 7(12):1–9, 2012.

    Article  Google Scholar 

Download references

Funding

G.S. acknowledges grant and funding support from the National Cancer Institute and the National Institute of Diabetes, and Digestive and Kidney Diseases of the National Institutes of Health under Award Number U54CA137788/U54CA132378, R01CA236615 and R01DK129990, the Department of Defense CDMRP PRCRP Award CA170630, and the Institute for Applied Life Sciences in the University of Massachusetts at Amherst. MB is supported by Grants from Harold Shames and the National Institutes of Health: NIH-NIDA UG3DA048502, NIH-NIGMS T34 GM137858, NIH-NINDS R01 NS112996, NIH-NINDS R01 NS101362, and NIH-G-RISE T32GM136499.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: GS, NRR; In vitro experiments: NRR; In vivo experiments: WRV, MF, LV, GS; Computational modeling: NK, MB; Data analysis: NRR, WRV, MF, LV, NK, GS; Statistical analysis: NRR, GS; Manuscript preparation: NRR, JJ, GS, MB.

Corresponding author

Correspondence to Govindarajan Srimathveeravalli.

Ethics declarations

Conflict of interest

The authors report no relevant disclosures related to the work presented here. The City University of New York has intellectual property (IP) on neuro-stimulation systems and methods with authors NK and MB as inventors. NK is an employee of Synchron, Inc. and consults for Ybrain, Inc. and Ceragem Medical. MB has equity in Soterix Medical, Inc. MB consults, received grants, assigned inventions, and/or serves on the SAB of SafeToddles, Boston Scientific, GlaxoSmithKline, Biovisics, Mecta, Lumenis, Halo Neuroscience, Google-X, i-Lumen, Humm, Allergan (Abbvie), and Apple. G.S. holds stock options in Aperture Medical.

Disclosure

Confocal images were imaged in the Light Microscopy Facility and Nikon Center of Excellence at the Institute for Applied Life Sciences, University of Massachusetts Amherst with support from the Massachusetts Life Science Center. The 3-D printed parts and mastermolds were printed using Advanced Digital Design and Fabrication core facility, University of Massachusetts Amherst.

Additional information

Associate Editor Scott Verbridge oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 478 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopalan, N.R., Vista, WR., Fujimori, M. et al. Cytoskeletal Remodeling and Gap Junction Translocation Mediates Blood–Brain Barrier Disruption by Non-invasive Low-Voltage Pulsed Electric Fields. Ann Biomed Eng 52, 89–102 (2024). https://doi.org/10.1007/s10439-023-03211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03211-3

Keywords

Navigation