Skip to main content
Log in

Characterizing Musculoskeletal Tissue Mechanics Based on Shear Wave Propagation: A Systematic Review of Current Methods and Reported Measurements

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Developing methods for the non-invasive characterization of the mechanics of musculoskeletal tissues is an ongoing research focus in biomechanics. Often, these methods use the speed of shear wave propagation to characterize tissue mechanics (e.g., shear wave elastography and shear wave tensiometry). The primary purpose of this systematic review was to identify, compare, and contrast current methods for exciting and measuring shear wave propagation in musculoskeletal tissues. We conducted searches in the Web of Science, PubMed, and Scopus databases for studies published from January 1, 1900, to May 1, 2020. These searches targeted both shear wave excitation using acoustic pushes and mechanical taps, and shear wave speed measurement using ultrasound, magnetic resonance imaging, accelerometers, and laser Doppler vibrometers. Two reviewers independently screened and reviewed the articles, identifying 524 articles that met our search criteria. Regarding shear wave excitation, we found that acoustic pushes are useful for exciting shear waves through the thickness of the tissue of interest, and mechanical taps are useful for exciting shear waves in wearable applications. Regarding shear wave speed measurement, we found that ultrasound is used most broadly to measure shear waves due to its ability to study regional differences and target specific tissues of interest. The strengths of magnetic resonance imaging, accelerometers, and laser Doppler vibrometers make them advantageous to measure shear wave speeds for high-resolution shear wave imaging, wearable measurements, and non-contact ex vivo measurements, respectively. The advantages that each method offers for exciting and measuring shear waves indicate that a variety of systems can be assembled using currently available technologies to determine musculoskeletal tissue material behavior across a range of innovative applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahmed, R., and M. M. Doyley. Distributing synthetic focusing over multiple push-detect events enhances shear wave elasticity imaging performance. IEEE Trans Ultrason Ferroelectr Freq Control. 66:1170–1184, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alfuraih, A. M., P. O’Connor, A. L. Tan, E. M. A. Hensor, A. Ladas, P. Emery, and R. J. Wakefield. Muscle shear wave elastography in idiopathic inflammatory myopathies: a case-control study with MRI correlation. Skeletal Radiol. 48:1209–1219, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alis, D., E. S. M. Durmaz, C. Alis, B. C. Erol, B. Okur, O. Kizilkilic, and I. Mihmanli. Shear wave elastography of the lumbar multifidus muscle in patients with unilateral lumbar disk herniation. J Ultrasound Med. 38:1695–1703, 2019

    Article  PubMed  Google Scholar 

  4. Aristizabal, S., C. Amador, B. Qiang, R. R. Kinnick, I. Z. Nenadic, J. F. Greenleaf, and M. W. Urban. Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle. Phys Med Biol. 59:7735–7752, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arya, S., and K. Kulig. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol. 108(670–675):2010, 1985

    Google Scholar 

  6. Ashman, R. B., J. D. Corin, and C. H. Turner. Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech. 20:979–986, 1987

    Article  CAS  PubMed  Google Scholar 

  7. Aubry, S., J. P. Nueffer, and M. Carrie. Evaluation of the effect of an anisotropic medium on shear wave velocities of intra-muscular gelatinous inclusions. Ultrasound Med Biol. 43:301–308, 2017

    Article  PubMed  Google Scholar 

  8. Aubry, S., J. R. Risson, A. Kastler, B. Barbier-Brion, G. Siliman, M. Runge, and B. Kastler. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol. 42:1143–1150, 2013

    Article  PubMed  Google Scholar 

  9. Badea, I., A. Tamas-Szora, I. Chiorean, F. Fildan, E. Ciulea, and M. Badea. Quantitative assessment of the masseter muscle’s elasticity using acoustic radiation force Impulse. Med Ultrason. 16:89–94, 2014

    Article  PubMed  Google Scholar 

  10. Basford, J. R., T. R. Jenkyn, K. N. An, R. L. Ehman, G. Heers, and K. R. Kaufman. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil. 83:1530–1536, 2002

    Article  PubMed  Google Scholar 

  11. Bensamoun, S. F., K. J. Glaser, S. I. Ringleb, Q. Chen, R. L. Ehman, and K. N. An. Rapid magnetic resonance elastography of muscle using one-dimensional projection. J Magn Reson Imaging. 27:1083–1088, 2008

    Article  PubMed  Google Scholar 

  12. Bensamoun, S. F., S. I. Ringleb, Q. Chen, R. L. Ehman, K. N. An, and M. Brennan. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patients before and after medical treatment. J Magn Reson Imaging. 26:708–713, 2007

    Article  PubMed  Google Scholar 

  13. Bensamoun, S. F., S. I. Ringleb, L. Littrell, Q. Chen, M. Brennan, R. L. Ehman, and K. N. An. Determination of thigh muscle stiffness using magnetic resonance elastography. J Magn Reson Imaging. 23:242–247, 2006

    Article  PubMed  Google Scholar 

  14. Bercoff, J., M. Tanter, and M. Fink. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 51:396–409, 2004

    Article  PubMed  Google Scholar 

  15. Blank, J. L., D. G. Thelen, and J. D. Roth. Shear wave speeds track axial stress in porcine collateral ligaments. J Mech Behav Biomed Mater. 105:103704, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bortolotto, C., L. Lungarotti, I. Fiorina, M. Zacchino, F. Draghi, and F. Calliada. Influence of subjects’ characteristics and technical variables on muscle stiffness measured by shear wave elastosonography. J Ultrasound. 20:139–146, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brum, J., M. Bernal, J. L. Gennisson, and M. Tanter. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol. 59:505–523, 2014

    Article  CAS  PubMed  Google Scholar 

  18. Catheline, S., J. L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli. Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am. 116:3734–3741, 2004

    Article  CAS  PubMed  Google Scholar 

  19. Cescon, C., P. Madeleine, and D. Farina. Longitudinal and transverse propagation of surface mechanomyographic waves generated by single motor unit activity. Med Biol Eng Comput. 46:871–877, 2008

    Article  PubMed  Google Scholar 

  20. Chen, J., M. O’Dell, W. He, L. J. Du, P. C. Li, and J. Gao. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position. Clin Imaging. 45:26–29, 2017

    Article  PubMed  Google Scholar 

  21. Chernak, L. A., R. J. DeWall, K. S. Lee, and D. G. Thelen. Length and activation dependent variations in muscle shear wave speed. Physiol Meas. 34:713–721, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho, K. H., and J. H. Nam. Evaluation of stiffness of the spastic lower extremity muscles in early spinal cord injury by acoustic radiation force impulse imaging. Ann Rehabil Med. 39:393–400, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coombes, B. K., K. Tucker, B. Vicenzino, V. Vuvan, R. Mellor, L. Heales, A. Nordez, and F. Hug. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. 28:1201–1208, 2018

    Article  CAS  PubMed  Google Scholar 

  24. Cortes, D. H., S. M. Suydam, K. G. Silbernagel, T. S. Buchanan, and D. M. Elliott. Continuous shear wave elastography: a new method to measure viscoelastic properties of tendons in vivo. Ultrasound Med Biol. 41:1518–1529, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  25. Debernard, L., L. Robert, F. Charleux, and S. F. Bensamoun. Characterization of muscle architecture in children and adults using magnetic resonance elastography and ultrasound techniques. J Biomech. 44:397–401, 2011

    Article  PubMed  Google Scholar 

  26. Debernard, L., L. Robert, F. Charleux, and S. F. Bensamoun. A possible clinical tool to depict muscle elasticity mapping using magnetic resonance elastography. Muscle & Nerve. 47:903–908, 2013

    Article  Google Scholar 

  27. Deffieux, T., J. L. Gennisson, B. Larrat, M. Fink, and M. Tanter. The variance of quantitative estimates in shear wave imaging: theory and experiments. IEEE Trans Ultrason Ferroelectr Freq Control. 59:2390–2410, 2012

    Article  PubMed  Google Scholar 

  28. DeWall, R. J., J. Jiang, J. J. Wilson, and K. S. Lee. Visualizing tendon elasticity in an ex vivo partial tear model. Ultrasound Med Biol. 40:158–167, 2014

    Article  PubMed  Google Scholar 

  29. DeWall, R. J., L. C. Slane, K. S. Lee, and D. G. Thelen. Spatial variations in Achilles tendon shear wave speed. J Biomech. 47:2685–2692, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dirrichs, T., V. Quack, M. Gatz, M. Tingart, C. K. Kuhl, and S. Schrading. Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol. 23:1204–1213, 2016

    Article  PubMed  Google Scholar 

  31. Dobrev, I., T. S. Farahmandi, J. H. Sim, F. Pfiffner, A. M. Huber, and C. Roosli. Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction. J Acoust Soc Am. 147:1985, 2020

    Article  PubMed  Google Scholar 

  32. Dobrev, I., J. H. Sim, S. Stenfelt, S. Ihrle, R. Gerig, F. Pfiffner, A. Eiber, A. M. Huber, and C. Roosli. Sound wave propagation on the human skull surface with bone conduction stimulation. Hear Res. 355:1–13, 2017

    Article  PubMed  Google Scholar 

  33. Dresner, M. A., G. H. Rose, P. J. Rossman, R. Muthupillai, A. Manduca, and R. L. Ehman. Magnetic resonance elastography of skeletal muscle. J Magn Reson Imaging. 13:269–276, 2001

    Article  CAS  PubMed  Google Scholar 

  34. Ebrahimi, A., I. F. Loegering, J. A. Martin, R. L. Pomeroy, J. D. Roth, and D. G. Thelen. Achilles tendon loading is lower in older adults than young adults across a broad range of walking speeds. Exp Gerontol. 137:110966, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eby, S. F., P. Song, S. Chen, Q. Chen, J. F. Greenleaf, and K. N. An. Validation of shear wave elastography in skeletal muscle. J Biomech. 46:2381–2387, 2013

    Article  PubMed  Google Scholar 

  36. Ewertsen, C., J. F. Carlsen, I. R. Christiansen, J. A. Jensen, and M. B. Nielsen. Evaluation of healthy muscle tissue by strain and shear wave elastography—dependency on depth and ROI position in relation to underlying bone. Ultrasonics. 71:127–133, 2016

    Article  PubMed  Google Scholar 

  37. Gennisson, J. L., S. Catheline, S. Chaffai, and M. Fink. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J Acoust Soc Am. 114:536–541, 2003

    Article  PubMed  Google Scholar 

  38. Guertler, C. A., R. J. Okamoto, J. A. Ireland, C. P. Pacia, J. R. Garbow, H. Chen, and P. V. Bayly. Estimation of anisotropic material properties of soft tissue by MRI of ultrasound-induced shear waves. J Biomech Eng. 142:031001, 2020

    Article  PubMed  Google Scholar 

  39. Guo, J., S. Hirsch, M. Scheel, J. Braun, and I. Sack. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: application to in vivo lower leg muscles. Magn Reson Med. 75:1537–1545, 2016

    Article  PubMed  Google Scholar 

  40. Harris, J. D., C. E. Quatman, M. M. Manring, R. A. Siston, and D. C. Flanigan. How to write a systematic review. Am J Sports Med. 42:2761–2768, 2014

    Article  PubMed  Google Scholar 

  41. Helland, C., J. Bojsen-Moller, T. Raastad, O. R. Seynnes, M. M. Moltubakk, V. Jakobsen, H. Visnes, and R. Bahr. Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. Br J Sports Med. 47:862–868, 2013

    Article  PubMed  Google Scholar 

  42. Karatekin, Y. S., B. Karaismailoglu, G. Kaynak, T. Ogut, A. S. Dikici, E. Ure-Esmerer, O. Aydingoz, and H. Botanlioglu. Does elasticity of Achilles tendon change after suture applications? Evaluation of repair area by acoustic radiation force impulse elastography. J Orthop Surg Res. 13:45, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  43. Keuler, E. M., I. F. Loegering, J. A. Martin, J. D. Roth, and D. G. Thelen. Shear wave predictions of achilles tendon loading during human walking. Sci Rep. 9:13419, 2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kwon, D. R., G. Y. Park, S. U. Lee, and I. Chung. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology. 263:794–801, 2012

    Article  PubMed  Google Scholar 

  45. Lee, H. Y., J. H. Lee, J. H. Shin, S. Y. Kim, H. J. Shin, J. S. Park, Y. J. Choi, and J. H. Baek. Shear wave elastography using ultrasound: effects of anisotropy and stretch stress on a tissue phantom and in vivo reactive lymph nodes in the neck. Ultrasonography. 36:25–32, 2017

    Article  PubMed  Google Scholar 

  46. Lee, S. S. M., K. L. Jakubowski, S. C. Spear, and W. Z. Rymer. Muscle material properties in passive and active stroke-impaired muscle. J Biomech. 83:197–204, 2019

    Article  PubMed  Google Scholar 

  47. Leonardis, J. M., D. M. Desmet, and D. B. Lipps. Quantifying differences in the material properties of the fiber regions of the pectoralis major using ultrasound shear wave elastography. J Biomech. 63:41–46, 2017

    Article  PubMed  Google Scholar 

  48. Levinson, S. F., M. Shinagawa, and T. Sato. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 28:1145–1154, 1995

    Article  CAS  PubMed  Google Scholar 

  49. Lim, S. D., Q. Huang, and E. J. Seibel. Evaluation of formalin fixation for tissue biopsies using shear wave laser speckle imaging system. IEEE J Transl Eng Health Med. 7:1500110, 2019

    Article  PubMed  Google Scholar 

  50. Martin, J. A., A. H. Biedrzycki, K. S. Lee, R. J. DeWall, S. H. Brounts, W. L. Murphy, M. D. Markel, and D. G. Thelen. In vivo measures of shear wave speed as a predictor of tendon elasticity and strength. Ultrasound Med Biol. 41:2722–2730, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin, J. A., S. C. E. Brandon, E. M. Keuler, J. R. Hermus, A. C. Ehlers, D. J. Segalman, M. S. Allen, and D. G. Thelen. Gauging force by tapping tendons. Nat Commun. 9:1592, 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Martin, J. A., M. W. Kindig, C. J. Stender, W. R. Ledoux, and D. G. Thelen. Calibration of the shear wave speed-stress relationship in in situ Achilles tendons using cadaveric simulations of gait and isometric contraction. J Biomech. 106:109799, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martin, J. A., D. G. Schmitz, A. C. Ehlers, M. S. Allen, and D. G. Thelen. Calibration of the shear wave speed-stress relationship in ex vivo tendons. J Biomech. 90:9–15, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moher D., A. Liberati, J. Tetzlaff and D. G. Altman. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 339:b2535, 2009

  55. Muthupillai, R., D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 269:1854–1857, 1995

    Article  CAS  PubMed  Google Scholar 

  56. Nelissen, J. L., L. de Graaf, W. A. Traa, T. J. Schreurs, K. M. Moerman, A. J. Nederveen, R. Sinkus, C. W. Oomens, K. Nicolay, and G. J. Strijkers. A MRI-compatible combined mechanical loading and MR elastography setup to study deformation-induced skeletal muscle damage in rats. PLoS ONE. 12:e0169864, 2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nightingale, K., M. S. Soo, R. Nightingale, and G. Trahey. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 28:227–235, 2002

    Article  PubMed  Google Scholar 

  58. Obst, S. J., L. J. Heales, B. L. Schrader, S. A. Davis, K. A. Dodd, C. J. Holzberger, L. B. Beavis, and R. S. Barrett. Are the mechanical or material properties of the achilles and patellar tendons altered in tendinopathy? A systematic review with meta-analysis. Sports Med. 48:2179–2198, 2018

    Article  PubMed  Google Scholar 

  59. Ohya, S., M. Nakamura, T. Aoki, D. Suzuki, T. Kikumoto, E. Nakamura, W. Ito, R. Hirabayashi, T. Takabayashi, and M. Edama. The effect of a running task on muscle shear elastic modulus of posterior lower leg. J Foot Ankle Res. 10:56, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  60. Palmeri, M. L., A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale. A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 52:1699–1712, 2005

    Article  PubMed  PubMed Central  Google Scholar 

  61. Palnitkar, H., R. O. Reiter, S. Majumdar, P. Lewis, M. Hammersley, R. N. Shah, T. J. Royston, and D. Klatt. An investigation into the relationship between inhomogeneity and wave shapes in phantoms and ex vivo skeletal muscle using magnetic resonance elastography and finite element analysis. J Mech Behav Biomed Mater. 98:108–120, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  62. Provenzano, P. P., D. Heisey, K. Hayashi, R. Lakes, and R. Vanderby Jr. Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol. 92(362–371):2002, 1985

    Google Scholar 

  63. Provenzano, P. P., and R. Vanderby Jr. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 25:71–84, 2006

    Article  CAS  PubMed  Google Scholar 

  64. Ramana, Y. V., G. G. Krishna, and M. A. Khadeer. Shear velocity of muscle tissues. J Biomed Eng. 2:211–215, 1980

    Article  CAS  PubMed  Google Scholar 

  65. Reeves, N. D., C. N. Maganaris, N. Maffulli, and J. Rittweger. Human patellar tendon stiffness is restored following graft harvest for anterior cruciate ligament surgery. J Biomech. 42:797–803, 2009

    Article  PubMed  Google Scholar 

  66. Rothberg, S., M. Allen, P. Castellini, D. Di Maio, J. Dirckx, D. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, and T. Ryan. An international review of laser Doppler vibrometry: making light work of vibration measurement. Optics Lasers Eng. 99:11–22, 2017

    Article  Google Scholar 

  67. Ruan, Z. M., B. Zhao, H. T. Qi, Y. Zhang, F. X. Zhang, M. Wu, and G. R. Shao. Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med. 8:1043–1050, 2015

    PubMed  PubMed Central  Google Scholar 

  68. Salman, M., and K. G. Sabra. Assessing non-uniform stiffening of the Achilles tendon noninvasively using surface wave. J Biomech. 82:357–360, 2019

    Article  PubMed  Google Scholar 

  69. Salman, M., and K. G. Sabra. Surface wave measurements using a single continuously scanning laser Doppler vibrometer: application to elastography. J Acoust Soc Am. 133:1245–1254, 2013

    Article  PubMed  Google Scholar 

  70. Salman, M., K. G. Sabra, and M. Shinohara. Assessment of muscle stiffness using a continuously scanning laser-Doppler vibrometer. Muscle Nerve. 50:133–135, 2014

    Article  PubMed  Google Scholar 

  71. Sarvazyan, A. P., M. W. Urban, and J. F. Greenleaf. Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol. 39:1133–1146, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schatzmann, L., P. Brunner, and H. U. Staubli. Effect of cyclic preconditioning on the tensile properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol Arthrosc. 6(Suppl 1):S56-61, 1998

    Article  PubMed  Google Scholar 

  73. Shin, D., T. Finni, S. Ahn, J. A. Hodgson, H. D. Lee, V. R. Edgerton, and S. Sinha. Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol. 105(1179–1186):2008, 1985

    Google Scholar 

  74. Song, P., H. Zhao, A. Manduca, M. W. Urban, J. F. Greenleaf, and S. Chen. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans Med Imaging. 31:1821–1832, 2012

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stenroth, L., J. Peltonen, N. J. Cronin, S. Sipila, and T. Finni. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol. 113(1537–1544):2012, 1985

    Google Scholar 

  76. Suga M., T. Obata, M. Hirano, T. Tanaka and H. Ikehira. Magnetic resonance elastography to observe deep areas: Comparison of external vibration systems. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007, p. 2599-2602.

  77. Suydam, S. M., D. H. Cortes, M. J. Axe, L. Snyder-Mackler, and T. S. Buchanan. Semitendinosus tendon for ACL reconstruction: regrowth and mechanical property recovery. Orthop J Sports Med. 5:2325967117712944, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  78. Topp, K. A., and W. D. O’Brien Jr. Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro. J Acoust Soc Am. 107:1027–1033, 2000

    Article  CAS  PubMed  Google Scholar 

  79. Tse, Z. T., H. Janssen, A. Hamed, M. Ristic, I. Young, and M. Lamperth. Magnetic resonance elastography hardware design: a survey. Proc Inst Mech Eng H. 223:497–514, 2009

    Article  CAS  PubMed  Google Scholar 

  80. Waugh, C. M., A. J. Blazevich, F. Fath, and T. Korff. Age-related changes in mechanical properties of the Achilles tendon. J Anat. 220:144–155, 2012

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, C., L. Duan, Q. Liu, and W. Zhang. Application of shear wave elastography and B-mode ultrasound in patellar tendinopathy after extracorporeal shockwave therapy. J Med Ultrason. 47(469–476):2020, 2001

    Google Scholar 

Download references

Acknowledgments

We thank Rhonda Sager and Jack Martin for their advice during the planning of this review.

This work was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under award number [NIBIB: R21 EB024957] and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health under award number [NIAMS: F32 AR076267]. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1747503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Conflict of interest

One of the authors (JDR) is a co-inventor on a pending patent application related to one of the methods described herein. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Roth.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blank, J., Blomquist, M., Arant, L. et al. Characterizing Musculoskeletal Tissue Mechanics Based on Shear Wave Propagation: A Systematic Review of Current Methods and Reported Measurements. Ann Biomed Eng 50, 751–768 (2022). https://doi.org/10.1007/s10439-022-02935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02935-y

Keywords

Navigation