Skip to main content
Log in

Effect of Alginate Microbead Encapsulation of Placental Mesenchymal Stem Cells on Their Immunomodulatory Function

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this research we have used different cytokines and progesterone to enhance the immunomodulatory capacity of placental-derived stem cells (PLSCs) prior to their encapsulation. We assessed the effect of microencapsulation of the cells without (control) or after 3-day treatment with interferon gamma (INFγ), interleukin10 (IL-10), or progesterone (P4). Treated PLSCs demonstrated strong immunosuppressive effects on phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMNCs). INFγ treatment resulted in the strongest immune inhibition among the treated groups. The treatments enhanced soluble human leukocyte antigen (sHLAG) secretion compared to control. The IL-10-treated group showed the highest effect on HLAG secretion compared to other groups. Alginate encapsulation of PLSCs did not affect cell viability, or sHLAG secretion. Also, after treatment the encapsulated PLSCs inhibited PHA-activated PBMNCs in the same manner as unencapsulated cells. We studied two groups of encapsulated PLSCs, one without perm-selective poly-l-ornithine (PLO)-coating and the other with PLO-coating, and measured levels of sHLAG secreted. We found no difference in sHLAG secretion between both groups. In summary, our data show that immunomodulatory function of the PLSC is not affected by encapsulation. These findings provide good promise for potential use of encapsulated PLSCs for immunomodulation treatment of disease by stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Abdi, R., P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 57(7):1759–1767, 2008.

    Article  CAS  Google Scholar 

  2. Campagnoli, C., I. A. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 98(8):2396–2402, 2001.

    Article  CAS  Google Scholar 

  3. Carosella, E. D., P. Moreau, J. Lemaoult, and N. Rouas-Freiss. HLA-G: from biology to clinical benefits. Trends Immunol. 29(3):125–132, 2008.

    Article  CAS  Google Scholar 

  4. Chang, C. J., M. L. Yen, Y. C. Chen, C. C. Chien, H. I. Huang, C. H. Bai, and B. L. Yen. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 24(11):2466–2477, 2006.

    Article  CAS  Google Scholar 

  5. Chen, P. M., M. L. Yen, K. J. Liu, H. K. Sytwu, and B. L. Yen. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J. Biomed. Sci. 18:49, 2011.

    Article  Google Scholar 

  6. Curigliano, G., C. Criscitiello, L. Gelao, and A. Goldhirsch. Molecular pathways: human leukocyte antigen G (HLA-G). Clin. Cancer Res. 19(20):5564–5571, 2013.

    Article  CAS  Google Scholar 

  7. Darrabie, M. D., W. F. Kendall Jr., and E. C. Opara. Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials. 26(34):6846–6852, 2005.

    Article  CAS  Google Scholar 

  8. de Vos, P., M. M. Faas, B. Strand, and R. Calafiore. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials. 27(32):5603–5617, 2006.

    Article  Google Scholar 

  9. Diaz-Lagares, A., E. Alegre, and A. Gonzalez. Detection of 3-nitrotyrosine-modified human leukocyte antigen-G in biological fluids. Hum. Immunol. 70(12):976–980, 2009.

    Article  CAS  Google Scholar 

  10. English, K., F. P. Barry, C. P. Field-Corbett, and B. P. Mahon. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 110(2):91–100, 2007.

    Article  CAS  Google Scholar 

  11. Gebler, A., O. Zabel, and B. Seliger. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 18(2):128–134, 2012.

    Article  CAS  Google Scholar 

  12. Hashemi, M., and F. Kalalinia. Application of encapsulation technology in stem cell therapy. Life Sci. 143:139–146, 2015.

    Article  CAS  Google Scholar 

  13. in’tAnker, P. S., W. A. Noort, S. A. Scherjon, C. Kleijburg-van der Keur, A. B. Kruisselbrink, R. L. van Bezooijen, W. Beekhuizen, R. Willemze, H. H. Kanhai, and W. E. Fibbe. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 88(8):845–852, 2003.

    Google Scholar 

  14. Ivanova-Todorova, E., M. Mourdjeva, D. Kyurkchiev, I. Bochev, E. Stoyanova, R. Dimitrov, T. Timeva, M. Yunakova, D. Bukarev, A. Shterev, P. Tivchev, and S. Kyurkchiev. HLA-G expression is up-regulated by progesterone in mesenchymal stem cells. Am. J. Reprod. Immunol. 62(1):25–33, 2009.

    Article  CAS  Google Scholar 

  15. Khoury, O., A. Atala, and S. V. Murphy. Stromal cells from perinatal and adult sources modulate the inflammatory immune response in vitro by decreasing Th1 cell proliferation and cytokine secretion. Stem Cells Transl. Med. 9(1):61–73, 2020.

    Article  CAS  Google Scholar 

  16. Kim, D. S., I. K. Jang, M. W. Lee, Y. J. Ko, D. H. Lee, J. W. Lee, K. W. Sung, H. H. Koo, and K. H. Yoo. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. EBioMedicine. 28:261–273, 2018.

    Article  Google Scholar 

  17. Krishnamurthy, N. V., and B. Gimi. Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit. Rev. Biomed. Eng. 39(6):473–491, 2011.

    Article  CAS  Google Scholar 

  18. Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.

    Article  CAS  Google Scholar 

  19. Liu, K. J., C. J. Wang, C. J. Chang, H. I. Hu, P. J. Hsu, Y. C. Wu, C. H. Bai, H. K. Sytwu, and B. L. Yen. Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transplant. 20(11–12):1721–1730, 2011.

    Article  Google Scholar 

  20. Meier, R. P., R. Mahou, P. Morel, J. Meyer, E. Montanari, Y. D. Muller, P. Christofilopoulos, C. Wandrey, C. Gonelle-Gispert, and L. H. Buhler. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J. Hepatol. 62(3):634–641, 2015.

    Article  CAS  Google Scholar 

  21. Meisel, R., A. Zibert, M. Laryea, U. Gobel, W. Daubener, and D. Dilloo. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 103(12):4619–4621, 2004.

    Article  CAS  Google Scholar 

  22. Moreau, P., F. Adrian-Cabestre, C. Menier, V. Guiard, L. Gourand, J. Dausset, E. D. Carosella, and P. Paul. IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int. Immunol. 11(5):803–811, 1999.

    Article  CAS  Google Scholar 

  23. Parekkadan, B., A. W. Tilles, and M. L. Yarmush. Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells. 26(7):1913–1919, 2008.

    Article  Google Scholar 

  24. Penolazzi, L., E. Tavanti, R. Vecchiatini, E. Lambertini, F. Vesce, R. Gambari, S. Mazzitelli, F. Mancuso, G. Luca, C. Nastruzzi, and R. Piva. Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng. Part C. 16(1):141–155, 2010.

    Article  CAS  Google Scholar 

  25. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411):143–147, 1999.

    Article  CAS  Google Scholar 

  26. Rizzo, R., D. Campioni, M. Stignani, L. Melchiorri, G. P. Bagnara, L. Bonsi, F. Alviano, G. Lanzoni, S. Moretti, A. Cuneo, F. Lanza, and O. R. Baricordi. A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy. 10(4):364–375, 2008.

    Article  CAS  Google Scholar 

  27. Rouas-Freiss, N., R. M. Goncalves, C. Menier, J. Dausset, and E. D. Carosella. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc. Natl. Acad. Sci. USA. 94(21):11520–11525, 1997.

    Article  CAS  Google Scholar 

  28. Selmani, Z., A. Naji, E. Gaiffe, L. Obert, P. Tiberghien, N. Rouas-Freiss, E. D. Carosella, and F. Deschaseaux. HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation. 87(9 Suppl):S62–S66, 2009.

    Article  CAS  Google Scholar 

  29. Selmani, Z., A. Naji, I. Zidi, B. Favier, E. Gaiffe, L. Obert, C. Borg, P. Saas, P. Tiberghien, N. Rouas-Freiss, E. D. Carosella, and F. Deschaseaux. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 26(1):212–222, 2008.

    Article  CAS  Google Scholar 

  30. Tendulkar, S., J. P. McQuilling, C. Childers, R. Pareta, E. C. Opara, and M. K. Ramasubramanian. A scalable microfluidic device for the mass production of microencapsulated islets. Transplant Proc. 43(9):3184–3187, 2011.

    Article  CAS  Google Scholar 

  31. Toma, J. G., M. Akhavan, K. J. Fernandes, F. Barnabe-Heider, A. Sadikot, D. R. Kaplan, and F. D. Miller. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3(9):778–784, 2001.

    Article  CAS  Google Scholar 

  32. Trouche, E., S. Girod Fullana, C. Mias, C. Ceccaldi, F. Tortosa, M. H. Seguelas, D. Calise, A. Parini, D. Cussac, and B. Sallerin. Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ. Cell Transplant. 19(12):1623–1633, 2010.

    Article  CAS  Google Scholar 

  33. Yang, S. H., M. J. Park, I. H. Yoon, S. Y. Kim, S. H. Hong, J. Y. Shin, H. Y. Nam, Y. H. Kim, B. Kim, and C. G. Park. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp. Mol. Med. 41(5):315–324, 2009.

    Article  CAS  Google Scholar 

  34. Yu, J., K. T. Du, Q. Fang, Y. Gu, S. S. Mihardja, R. E. Sievers, J. C. Wu, and R. J. Lee. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials. 31(27):7012–7020, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sean Murphy Lab at WFIRM for the provision of the placenta mesenchymal stem cells used in our studies.

Funding

This work was supported in part with funds from a scholarship from the Egyptian government to Fatma Khalil as a part of a joint research training supervision agreement with the Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel C. Opara.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this study.

Ethical Approval and Consent to Participate

All human cells, peripheral blood mononuclear cells (PBMNCs), and placental stem cells (PLSCs) used in this study were obtained in accordance with the Declaration of Helsinki under protocols approved by the Wake Forest University Sciences Institutional Review Board (IRB).

Consent for Publication

Not applicable as no images, or videos relating to an individual person is included in this manuscript.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, F., Alwan, A., Ralph, P. et al. Effect of Alginate Microbead Encapsulation of Placental Mesenchymal Stem Cells on Their Immunomodulatory Function. Ann Biomed Eng 50, 291–302 (2022). https://doi.org/10.1007/s10439-022-02920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02920-5

Keywords

Navigation