Skip to main content
Log in

Recent Developments in Prosthesis Sensors, Texture Recognition, and Sensory Stimulation for Upper Limb Prostheses

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current developments being made in upper limb prostheses are focused on replacing lost sensory information to the amputees. Providing sensory stimulation from the prosthesis can directly improve control over the prosthetic and provide a sense of body ownership. The focus of this review article is on recent developments while including foundational knowledge for some of the critical concepts in neural prostheses. Reported concepts follow the flow of information from sensors to signal processing, with emphasis on texture recognition, and then to sensory stimulation strategies that reestablish the lost sensory feedback loop. Prosthetic sensors are used to detect the physical environment, converting pressure, force, and position into electrical signals. The electrical signals can then be processed in an effort to identify the surrounding environment using distinctive characteristics such as stiffness and texture. In order for the amputee to use this information in a natural manner, there must be real-time sensory stimulation, perception, and motor control of the prosthesis. Although truly complete sensory replacement has not yet been realized, some basic percepts can be partially restored, allowing progress towards a more realistic prosthesis with natural sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abraira, V. E., and D. D. Ginty. the sensory neurons of touch. Neuron 79:618–639, 2013.

    CAS  PubMed  Google Scholar 

  2. Akhtar, A., M. Nguyen, L. Wan, B. Boyce, P. Slade, and T. Bretl. Passive Mechanical Skin Stretch for Multiple Degree-of-Freedom Proprioception in a Hand Prosthesis, 2014.

  3. Arakeri, T. J., B. A. Hasse, and A. J. Fuglevand. Object discrimination using electrotactile feedback. J. Neural Eng. 15:046007, 2018.

    PubMed  PubMed Central  Google Scholar 

  4. Bensmaia, S. J., and L. E. Miller. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15:313, 2014.

    CAS  PubMed  Google Scholar 

  5. Biddiss, E. A., and T. T. Chau. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31:236–257, 2007.

    PubMed  Google Scholar 

  6. Boretius, T., J. Badia, A. Pascual-Font, M. Schuettler, X. Navarro, K. Yoshida, and T. Stieglitz. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26:62–69, 2010.

    CAS  PubMed  Google Scholar 

  7. Brill, N. A., S. N. Naufel, K. Polasek, C. Ethier, J. Cheesborough, S. Agnew, L. E. Miller, and D. J. Tyler. Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys. J. Neural Eng. 15:036003, 2018.

    CAS  PubMed  Google Scholar 

  8. Cao, Y., T. Li, Y. Gu, H. Luo, S. Wang, and T. Zhang. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small 14:1703902, 2018.

    Google Scholar 

  9. Casini, S., M. Morvidoni, M. Bianchi, M. Catalano, G. Grioli, and A. Bicchi. Design and realization of the CUFF - clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015. https://doi.org/10.1109/iros.2015.7353520.

  10. Chaubey, P., T. Rosenbaum-Chou, W. Daly, and D. Boone. Closed-loop vibratory haptic feedback in upper-limb prosthetic users. J. Prosthet. Orthot. 26:120–127, 2014.

    Google Scholar 

  11. Chen, S., A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359:679–684, 2018.

    CAS  PubMed  Google Scholar 

  12. Chortos, A., J. Liu, and Z. Bao. Pursuing prosthetic electronic skin. Nat. Mater. 15:937–950, 2016.

    CAS  PubMed  Google Scholar 

  13. Christie, B. P., M. Freeberg, W. D. Memberg, G. J. C. Pinault, H. A. Hoyen, D. J. Tyler, and R. J. Triolo. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J. NeuroEng. Rehabil. 14:70, 2017.

    PubMed  PubMed Central  Google Scholar 

  14. Chun, S., A. Hong, Y. Choi, C. Ha, and W. Park. A tactile sensor using a conductive graphene-sponge composite. Nanoscale 8:9185–9192, 2016.

    CAS  PubMed  Google Scholar 

  15. Chun, S., Y. Kim, H.-S. Oh, G. Bae, and W. Park. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 7:11652–11659, 2015.

    CAS  PubMed  Google Scholar 

  16. Chun, K.-Y., Y. J. Son, E.-S. Jeon, S. Lee, and C.-S. Han. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 30:1706299, 2018.

    Google Scholar 

  17. Clemente, F., M. D’Alonzo, M. Controzzi, B. B. Edin, and C. Cipriani. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24:1314–1322, 2016.

    PubMed  Google Scholar 

  18. Clemente, F., S. Dosen, L. Lonini, M. Markovic, D. Farina, and C. Cipriani. Humans can integrate augmented reality feedback in their sensorimotor control of a robotic hand. IEEE Trans. Hum. Mach. Syst. 47:583–589, 2017.

    Google Scholar 

  19. Cula, O. G., and K. J. Dana. Recognition methods for 3D textured surfaces. Proc. SPIE 2001. https://doi.org/10.1117/12.429492.

    Article  Google Scholar 

  20. Dahiya, R. S., G. Metta, M. Valle, and G. Sandini. Tactile sensing-from humans to humanoids. TRO 26:1–20, 2010.

    Google Scholar 

  21. Dalonzo, M., S. Dosen, C. Cipriani, and D. Farina. HyVE: hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 22:290–301, 2014.

    Google Scholar 

  22. de Boissieu, F., C. Godin, B. Guilhamat, D. David, C. Serviere, D. Baudois. Tactile texture recognition with a 3-axial force MEMS integrated artificial finger, 2009. https://doi.org/10.15607/rss.2009.v.007

  23. Ehrsson, H. H., B. Rosen, A. Stockselius, C. Ragno, P. Kohler, and G. Lundborg. Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131:3443–3452, 2008.

    PubMed  PubMed Central  Google Scholar 

  24. FitzGerald, J. J., N. Lago, S. Benmerah, J. Serra, C. P. Watling, R. E. Cameron, E. Tarte, S. P. Lacour, S. B. McMahon, and J. W. Fawcett. A regenerative microchannel neural interface for recording from and stimulating peripheral axonsin vivo. J. Neural Eng. 9:016010, 2012.

    PubMed  Google Scholar 

  25. Han, S., A. Samanta, X. Xie, L. Huang, J. Peng, S. J. Park, D. B. L. Teh, Y. Choi, Y.-T. Chang, A. H. All, Y. Yang, B. Xing, and X. Liu. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv. Mater. 29:1700244, 2017.

    Google Scholar 

  26. Jamali, N., and C. Sammut. Majority voting: material classification by tactile sensing using surface texture. IEEE Trans. Rob. 27:508–521, 2011.

    Google Scholar 

  27. Ji, Z., H. Zhu, H. Liu, N. Liu, T. Chen, Z. Yang, and L. Sun. The design and characterization of a flexible tactile sensing array for robot skin. Sensors (Basel, Switzerland) 16:201, 2016.

    Google Scholar 

  28. Karim, S. A. A., M. H. Kamarudin, B. A. Karim, M. K. Hasan, and J. Sulaiman. Wavelet transform and fast fourier transform for signal compression: a comparative study. J IFET 2011. https://doi.org/10.1109/icedsa.2011.5959031.

    Article  Google Scholar 

  29. Kim, D.-H., J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers. Stretchable and foldable silicon integrated circuits. Science 320:507–511, 2008.

    CAS  PubMed  Google Scholar 

  30. Kim, S.-H., J. Engel, C. Liu, and D. L. Jones. Texture classification using a polymer-based MEMS tactile sensor. J. Micromech. Microeng. 15:912–920, 2005.

    Google Scholar 

  31. Kim, J., M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D.-H. Kim. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5:5747, 2014.

    CAS  PubMed  Google Scholar 

  32. Lamport, Z. A., H. F. Haneef, S. Anand, M. Waldrip, and O. D. Jurchescu. Tutorial: organic field-effect transistors: materials, structure and operation. J. Appl. Phys. 124:071101, 2018.

    Google Scholar 

  33. Lee, H. U., A. Blasiak, D. R. Agrawal, D. T. B. Loong, N. V. Thakor, A. H. All, J. S. Ho, and I. H. Yang. Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE 12:e0179642, 2017.

    PubMed  PubMed Central  Google Scholar 

  34. Lee, S., S. Sheshadri, Z. Xiang, I. Delgado-Martinez, N. Xue, T. Sun, N. V. Thakor, S.-C. Yen, and C. Lee. Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes. Sens. Actuators B Chem. 242:1165–1170, 2017.

    CAS  Google Scholar 

  35. Liao, Z., W. Liu, Y. Wu, C. Zhang, Y. Zhang, X. Wang, and X. Li. A tactile sensor translating texture and sliding motion information into electrical pulses. Nanoscale 7:10801–10806, 2015.

    CAS  PubMed  Google Scholar 

  36. Liu, X., Y. Wang, X. Li, Z. Yi, R. Deng, L. Liang, X. Xie, D. T. B. Loong, S. Song, D. Fan, A. H. All, H. Zhang, L. Huang, and X. Liu. Binary temporal upconversion codes of Mn2+—activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 8:1–7, 2017.

    Google Scholar 

  37. Llado, X., M. Petrou, and J. Marti. Surface texture recognition by surface rendering. Optic Eng. 2005. https://doi.org/10.1117/1.1869994.

    Article  Google Scholar 

  38. Lu, N., C. Lu, S. Yang, and J. Rogers. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22:4044–4050, 2012.

    CAS  Google Scholar 

  39. Lucarotti, C., C. M. Oddo, N. Vitiello, and M. C. Carrozza. Synthetic and bio-artificial tactile sensing: a review. Sensors (Basel, Switzerland) 13:1435–1466, 2013.

    CAS  Google Scholar 

  40. Maciejasz, P., J. Badia, T. Boretius, D. Andreu, T. Stieglitz, W. Jensen, X. Navarro, and D. Guiraud. Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME. Med. Biol. Eng. Compu. 53:371–379, 2015.

    Google Scholar 

  41. Mannsfeld, S. C. B., B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9:859–864, 2010.

    CAS  PubMed  Google Scholar 

  42. Markovic, M., H. Karnal, B. Graimann, D. Farina, and S. Dosen. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses. J. Neural Eng. 14:036007, 2017.

    PubMed  Google Scholar 

  43. Muhammad, H. B., C. M. Oddo, L. Beccai, C. Recchiuto, C. J. Anthony, M. J. Adams, M. C. Carrozza, D. W. L. Hukins, and M. C. L. Ward. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A 165:221–229, 2011.

    CAS  Google Scholar 

  44. Muhammad, H. B., C. Recchiuto, C. M. Oddo, L. Beccai, C. J. Anthony, M. J. Adams, M. C. Carrozza, and M. C. L. Ward. A capacitive tactile sensor array for surface texture discrimination. Microelectron. Eng. 88:1811–1813, 2011.

    CAS  Google Scholar 

  45. Nicolò, B., and B-B Gabriel. Effects of Chai3D Texture Rendering Parameters on Texture Perception, 2018. https://doi.org/10.5281/zenodo.1287011

  46. Oddo, C. M., S. Raspopovic, F. Artoni, A. Mazzoni, G. Spigler, F. Petrini, F. Giambattistelli, F. Vecchio, F. Miraglia, L. Zollo, G. Di Pino, D. Camboni, M. C. Carrozza, E. Guglielmelli, P. M. Rossini, U. Faraguna, and S. Micera. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5:e09148, 2016.

    PubMed  PubMed Central  Google Scholar 

  47. Osborn, L. E., A. Dragomir, J. L. Betthauser, C. L. Hunt, H. H. Nguyen, R. R. Kaliki, and N. V. Thakor. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Rob. 3:eaat3818, 2018.

    Google Scholar 

  48. Pang, C., G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11:795–801, 2012.

    CAS  PubMed  Google Scholar 

  49. Peng, J., A. Samanta, X. Zeng, S. Han, L. Wang, D. Su, D. T. B. Loong, N.-Y. Kang, S.-J. Park, A. H. All, W. Jiang, L. Yuan, X. Liu, and Y.-T. Chang. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes. Angew. Chem. Int. Ed. 56:4165–4169, 2017.

    CAS  Google Scholar 

  50. Prasad, A., D. B. L. Teh, A. Blasiak, C. Chai, Y. Wu, P. M. Gharibani, I. H. Yang, T. T. Phan, K. L. Lim, H. Yang, X. Liu, and A. H. All. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep. 7:1–12, 2017.

    Google Scholar 

  51. Qin, L., Z. Yi, and Y. Zhang. Enhanced surface roughness discrimination with optimized features from bio-inspired tactile sensor. Sens. Actuators A 2017. https://doi.org/10.1016/j.sna.2017.07.054.

    Article  Google Scholar 

  52. Qin, L., and Y. Zhang. Roughness discrimination with bio-inspired tactile sensor manually sliding on polished surfaces. Sens. Actuators A 279:433–441, 2018.

    CAS  Google Scholar 

  53. Resnik, L., M. R. Meucci, S. Lieberman-Klinger, C. Fantini, D. L. Kelty, R. Disla, and N. Sasson. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93:710–717, 2012.

    PubMed  Google Scholar 

  54. Rijnbeek, E. H., N. Eleveld, and W. Olthuis. Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Frontiers Neurosci. 2018. https://doi.org/10.3389/fnins.2018.00350.

    Article  Google Scholar 

  55. Ryu, S., P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936, 2015.

    CAS  PubMed  Google Scholar 

  56. Schiefer, M. A., M. Freeberg, G. J. C. Pinault, J. Anderson, H. Hoyen, D. J. Tyler, and R. J. Triolo. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J. Neural Eng. 10:056006, 2013.

    CAS  PubMed  Google Scholar 

  57. Schoepp, K. R., M. R. Dawson, J. S. Schofield, J. P. Carey, and J. S. Hebert. Design and integration of an inexpensive wearable mechanotactile feedback system for myoelectric prostheses. J. IEEE Transl. Eng. Health Med. 2018. https://doi.org/10.1109/jtehm.2018.2866105.

    Article  Google Scholar 

  58. Shin, H., Z. Watkins, H. Huang, Y. Zhu, and X. Hu. Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. J. Neural Eng. 15:046005, 2018.

    PubMed  Google Scholar 

  59. Song, A., Y. Han, H. Hu, and J. Li. A novel texture sensor for fabric texture measurement and classification. IEEE Trans. Instrum. Meas. 63:1739–1747, 2014.

    Google Scholar 

  60. Svensson, P., U. Wijk, A. Björkman, and C. Antfolk. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Dev. 14:439–447, 2017.

    CAS  Google Scholar 

  61. Tan, D. W., M. A. Schiefer, M. W. Keith, J. R. Anderson, and D. J. Tyler. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 12:026002, 2015.

    PubMed  PubMed Central  Google Scholar 

  62. Tan, D. W., M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, and D. J. Tyler. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6:257, 2014.

    Google Scholar 

  63. Tee, B. C.-K., A. Chortos, A. Berndt, A. K. Nguyen, A. Tom, A. McGuire, Z. C. Lin, K. Tien, W.-G. Bae, H. Wang, P. Mei, H.-H. Chou, B. Cui, K. Deisseroth, T. N. Ng, and Z. Bao. A skin-inspired organic digital mechanoreceptor. Science 350:313–316, 2015.

    CAS  PubMed  Google Scholar 

  64. Thota, A. K., S. Kuntaegowdanahalli, A. K. Starosciak, J. J. Abbas, J. Orbay, K. W. Horch, and R. Jung. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves. J. Neurosci. Methods 244:78–84, 2015.

    PubMed  Google Scholar 

  65. Tiwana, M. I., S. J. Redmond, and N. H. Lovell. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A 179:17–31, 2012.

    CAS  Google Scholar 

  66. Trbac, M., M. Beli, M. Isakovi, V. Koji, G. Bijeli, I. Popovi, M. Radoti, S. Doen, M. Markovi, D. Farina, and T. Keller. Integrated and flexible multichannel interface for electrotactile stimulation. J. Neural Eng. 13:046014, 2016.

    Google Scholar 

  67. Tyler, D. J. Neural interfaces for somatosensory feedback: bringing life to a prosthesis. Curr. Opin. Neurol. 28:574–581, 2015.

    PubMed  PubMed Central  Google Scholar 

  68. Volkmar, R., S. Dosen, J. Gonzalez-Vargas, M. Baum, and M. Markovic. Improving bimanual interaction with a prosthesis using semi-autonomous control. J. NeuroEng. Rehabil. 16:140, 2019.

    PubMed  PubMed Central  Google Scholar 

  69. Wettels, N., V. J. Santos, R. S. Johansson, and G. E. Loeb. Biomimetic tactile sensor array. Adv. Rob. 22:829–849, 2008.

    Google Scholar 

  70. Wu, Y., Y. Liu, Y. Zhou, Q. Man, C. Hu, W. Asghar, F. Li, Z. Yu, J. Shang, G. Liu, M. Liao, and R.-W. Li. A skin-inspired tactile sensor for smart prosthetics. Sci. Rob. 2018. https://doi.org/10.1126/scirobotics.aat0429.

    Article  Google Scholar 

  71. Xu, H., D. Zhang, J. C. Huegel, W. Xu, and X. Zhu. Effects of different tactile feedback on myoelectric closed-loop control for grasping based on electrotactile stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 24:827–836, 2016.

    PubMed  Google Scholar 

  72. Xue, N., T. Sun, W. M. Tsang, I. Delgado-Martinez, S.-H. Lee, S. Sheshadri, Z. Xiang, S. Merugu, Y. Gu, S.-C. Yen, and N. V. Thakor. Polymeric C-shaped cuff electrode for recording of peripheral nerve signal. Sens. Actuators B Chem. 210:640–648, 2015.

    CAS  Google Scholar 

  73. Yeo, J. C., Z. Liu, Z. Zhang, P. Zhang, Z. Wang, and C. T. Lim. Wearable mechanotransduced tactile sensor for haptic perception. Adv. Mater. Technol. 2:1700006, 2017.

    Google Scholar 

  74. Yi, Z., and Y. Zhang. Bio-inspired tactile FA-I spiking generation under sinusoidal stimuli. J. Bionic Eng. 13:612–621, 2016.

    Google Scholar 

  75. Yi, Z., Y. Zhang, and J. Peters. Bioinspired tactile sensor for surface roughness discrimination. Sens. Actuators A 2017. https://doi.org/10.1016/j.sna.2016.12.021.

    Article  Google Scholar 

  76. Yousef, H., M. Boukallel, and K. Althoefer. Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens. Actuators A 167:171–187, 2011.

    CAS  Google Scholar 

  77. Zhang, T., L. Jiang, and H. Liu. Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26:1391–1399, 2018.

    PubMed  Google Scholar 

  78. Zhao, H., K. O’Brien, S. Li, and R. F. Shepherd. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Rob. 1:eaai7529, 2016.

    Google Scholar 

  79. Zhu, G., W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, and Z. L. Wang. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14:3208, 2014.

    CAS  PubMed  Google Scholar 

  80. Zollo, L., G. Di Pino, A. L. Ciancio, F. Ranieri, F. Cordella, C. Gentile, E. Noce, R. A. Romeo, A. D. Bellingegni, G. Vadalà, S. Miccinilli, A. Mioli, L. Diaz-Balzani, M. Bravi, K.-P. Hoffmann, A. Schneider, L. Denaro, A. Davalli, E. Gruppioni, R. Sacchetti, S. Castellano, V. Di Lazzaro, S. Sterzi, V. Denaro, and E. Guglielmelli. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Rob. 4:e9924, 2019.

    Google Scholar 

  81. Zou, L., C. Ge, Z. J. Wang, E. Cretu, and X. Li. Novel tactile sensor technology and smart tactile sensing systems: a review. Sensors 17:2653, 2017.

    Google Scholar 

  82. Zou, Z., C. Zhu, Y. Li, X. Lei, W. Zhang, and J. Xiao. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4:eaaq0508, 2018.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Robert Wright, MLS for his guidance and expertise with database searching in order to find relevant publications. We additionally recognize the contributions of Brice Lapin, Jack Wright, and Yiyuan Zhang in the preliminary literature search and data collection. Select illustrations for this article were created with Biorender.com following an academic licensing agreement.

Author contribution

AA, AM, SS, HK, and KD contributed to the conception and design. AM, SS, HK, and KD performed literature search, data analysis and drafted the manuscript. XL provided critical revision of the work. AA supervised and reviewed this work.

Funding

This study did not receive any external funding. This article was in part supported by the Start-Up Tier 1 grant # 21.4531.162640 (PI: A. ALL) and by the Faculty Seed Fund # 31.4531.179234 (PI: A. ALL) from Hong Kong Baptist University (HKBU), Hong Kong.

Conflict of interest

All authors declare no conflict of interest and have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Liu or Angelo H. All.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masteller, A., Sankar, S., Kim, H.B. et al. Recent Developments in Prosthesis Sensors, Texture Recognition, and Sensory Stimulation for Upper Limb Prostheses. Ann Biomed Eng 49, 57–74 (2021). https://doi.org/10.1007/s10439-020-02678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02678-8

Keywords

Navigation