Skip to main content

Advertisement

Log in

Development and Evaluation of CT-to-3D Ultrasound Image Registration Algorithm in Vertebral Phantoms for Spine Surgery

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Posterior spinal fusion surgery requires careful insertion of screws into the spine to avoid neurologic injury. While current systems use CT-scans, three-dimensional ultrasound (3DUS) could provide guidance by reconstructing the vertebral surface, and then registering a pre-operative vertebral model to that surface for localization. The aim of this study was to evaluate the accuracy and processing time of a custom CT-3DUS registration algorithm. A phantom human vertebra was 3D-printed and scanned with a motion capture-based 3D ultrasound (3DUS) system. Image registration was performed that included a pre-alignment phase using vertebral symmetry information, and then comparing Gaussian pyramid intensity-based registration with iterative-closest-point registration for final transformations. Image registration was performed 192 times while surgical registration between CT and real-world position was performed 84 times. The accuracy of image registration (CT-to-3DUS) was 0.3 ± 0.2 mm and 0.9 ± 0.8° completed in 13.3 ± 2.9 s. The surgical navigation accuracy (CT model to real-world position) of the system was 1.2 ± 0.5 mm and 2.2 ± 2.0° completed in 16.2 ± 3.0 s. Both meet accuracy thresholds of < 2 mm and < 5° required for the surgery. A feasibility study on porcine spine qualitatively showed appropriate overlapping anatomy in CT-3DUS registrations. The usage of 3D ultrasound for navigation has demonstrated accuracy to provide radiation-free image guidance for spine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, C. H., J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid Methods in Image Processing. RCA engineer 29(6):33–41, 1984.

    Google Scholar 

  2. Atlas, H.-E. Atlas of ultrasound-guided procedures in interventional pain management [electronic resource]. New York: Springer, 2011.

    Google Scholar 

  3. Bærentzen, J. A., J. Gravesen, F. Anton, and H. Aanæs. Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods. London: Springer-Verlag, 2012.

    Book  Google Scholar 

  4. Basques, B. A., A. M. Lukasiewicz, A. M. Samuel, M. L. Webb, D. D. Bohl, B. G. Smith, and J. N. Grauer. which pediatric orthopaedic procedures have the greatest risk of adverse outcomes? J. Pediatr. Orthop. 37:429–434, 2017.

    Article  Google Scholar 

  5. Chan, A., J. Aguillon, D. Hill, and E. Lou. Precision and accuracy of consumer-grade motion tracking system for pedicle screw placement in pediatric spinal fusion surgery. Med. Eng. Phys. 46:33–43, 2017.

    Article  Google Scholar 

  6. Chan, A., E. Parent, and E. Lou. Reconstruction and positional accuracy of 3D ultrasound on vertebral phantoms for adolescent idiopathic scoliosis spinal surgery. Int. J. Comput. Assist. Radiol. Surg. 2018. https://doi.org/10.1007/s11548-018-1894-4.

    Article  PubMed  Google Scholar 

  7. Chan, A., E. Parent, J. Wong, K. Narvacan, C. San, and E. Lou. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis. Eur. Spine J. 2019. https://doi.org/10.1007/s00586-019-06219-3.

    Article  PubMed  Google Scholar 

  8. Chen, T. K., P. Abolmaesumi, A. D. Thurston, and R. E. Ellis. Automated 3D freehand ultrasound calibration with real-time accuracy contro. Med. Image Comput. Comput.-Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv 9:899–906, 2006.

    Google Scholar 

  9. Chen, F., D. Wu, and H. Liao. Registration of CT and Ultrasound Images of the Spine with Neural Network and Orientation Code Mutual Information. Cham: Springer, 2016.

    Book  Google Scholar 

  10. Chen, Z., B. Wu, X. Zhai, Y. Bai, X. Zhu, B. Luo, X. Chen, C. Li, M. Yang, K. Xu, C. Liu, C. Wang, Y. Zhao, X. Wei, K. Chen, W. Yang, D. Ta, and M. Li. Basic study for ultrasound-based navigation for pedicle screw insertion using transmission and backscattered methods. PloS One 10:e0122392, 2015.

    Article  Google Scholar 

  11. Coe, J. D., V. Arlet, W. Donaldson, S. Berven, D. S. Hanson, R. Mudiyam, J. H. Perra, and C. I. Shaffrey. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine 31:345–349, 2006.

    Article  Google Scholar 

  12. Cuartas, E., A. Rasouli, M. O’Brien, and H. L. Shufflebarger. Use of all-pedicle-screw constructs in the treatment of adolescent idiopathic scoliosis. J. Am. Acad. Orthop. Surg. 17:550–561, 2009.

    Article  Google Scholar 

  13. De Lorenzo, D., A. Vaccarella, G. Khreis, H. Moennich, G. Ferrigno, and E. De Momi. Accurate calibration method for 3D freehand ultrasound probe using virtual plane. Med. Phys. 38:6710–6720, 2011.

    Article  Google Scholar 

  14. Fitzpatrick, J. M. Fiducial registration error and target registration error are uncorrelated. New York: Springer, 2009.

    Book  Google Scholar 

  15. Gueziri, H.-E., and D. L. Collins. Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery. New York: Springer, 2019.

    Book  Google Scholar 

  16. Hacihaliloglu, I., A. Rasoulian, R. N. Rohling, and P. Abolmaesumi. Local phase tensor features for 3-D ultrasound to statistical shape + pose spine model registration. IEEE Trans. Med. Imaging 33:2167–2179, 2014.

    Article  Google Scholar 

  17. Holly, L. T., O. Bloch, and J. P. Johnson. Evaluation of registration techniques for spinal image guidance. J. Neurosurg. Spine 4:323–328, 2006.

    Article  Google Scholar 

  18. Konieczny, M. R., H. Senyurt, and R. Krauspe. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 7:3–9, 2013.

    Article  Google Scholar 

  19. Koo, T. K., and W. E. Kwok. A non-ionizing technique for three-dimensional measurement of the lumbar spine. J. Biomech. 49:4073–4079, 2016.

    Article  Google Scholar 

  20. Lou, E. H., D. L. Hill, A. Donauer, M. Tilburn, D. Hedden, and M. Moreau. Results of ultrasound-assisted brace casting for adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 12:23, 2017.

    Article  Google Scholar 

  21. Maruyama, T., and K. Takeshita. Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 3:6, 2008.

    Article  Google Scholar 

  22. Mujagić, M., H. J. Ginsberg, and R. S. C. Cobbold. Development of a method for ultrasound-guided placement of pedicle screws. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55:1267–1276, 2008.

    Article  Google Scholar 

  23. Parker, S. L., M. J. McGirt, S. H. Farber, A. G. Amin, A.-M. Rick, I. Suk, A. Bydon, D. M. Sciubba, J.-P. Wolinsky, Z. L. Gokaslan, and T. F. Witham. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68:170–178, 2011; ((Discussion 178)).

    Article  Google Scholar 

  24. Perna, F., R. Borghi, F. Pilla, N. Stefanini, A. Mazzotti, and M. Chehrassan. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet. Surg. 100:165–169, 2016.

    Article  CAS  Google Scholar 

  25. Puvanesarajah, V., J. A. Liauw, S. Lo, I. A. Lina, and T. F. Witham. Techniques and accuracy of thoracolumbar pedicle screw placement. World J. Orthop. 5:112–123, 2014.

    Article  Google Scholar 

  26. Rampersaud, Y. R., D. A. Simon, and K. T. Foley. Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359, 2001.

    Article  CAS  Google Scholar 

  27. Reames, D. L., J. S. Smith, K.-M. G. Fu, D. W. Polly, C. P. Ames, S. H. Berven, J. H. Perra, S. D. Glassman, R. E. McCarthy, R. D. Knapp, R. Heary, C. I. Shaffrey, and Scoliosis Research Society Morbidity and Mortality Committee. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine 36:1484–1491, 2011.

    Article  Google Scholar 

  28. Richards, B. S., R. M. Bernstein, C. R. D’Amato, and G. H. Thompson. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine 30:2068–2075, 2005; ((Discussion 2076–2077)).

    Article  Google Scholar 

  29. Takahashi, J., H. Hirabayashi, H. Hashidate, N. Ogihara, and H. Kato. Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine 35:347–352, 2010.

    Article  Google Scholar 

  30. Tamura, Y., N. Sugano, T. Sasama, Y. Sato, S. Tamura, K. Yonenobu, H. Yoshikawa, and T. Ochi. Surface-based registration accuracy of CT-based image-guided spine surgery. Eur. Spine J. 14:291–297, 2005.

    Article  Google Scholar 

  31. Yan, C. X. B., B. Goulet, D. Tampieri, and D. L. Collins. Ultrasound-CT registration of vertebrae without reconstruction. Int. J. Comput. Assist. Radiol. Surg. 7:901–909, 2012.

    Article  Google Scholar 

  32. Zheng, Y.-P., T. Lee, K. Lai, B. Yip, G. Zhou, W.-W. Jiang, J. Cheung, M.-S. Wong, B. Ng, J. Cheng, and T.-P. Lam. A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis Spinal Disord. 11:13, 2016.

    Article  Google Scholar 

  33. Zindrick, M. R., G. W. Knight, M. J. Sartori, T. J. Carnevale, A. G. Patwardhan, and M. A. Lorenz. Pedicle morphology of the immature thoracolumbar spine. Spine 25:2726–2735, 2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the finical support from the Alberta Spine Foundation, the Natural Sciences and Engineering Research Council of Canada, and the Alberta Innovates Technology Future. We also like to thank Dr. Kumaradevan Punithakumar for guidance on image registration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond Lou.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A., Coutts, B., Parent, E. et al. Development and Evaluation of CT-to-3D Ultrasound Image Registration Algorithm in Vertebral Phantoms for Spine Surgery. Ann Biomed Eng 49, 310–321 (2021). https://doi.org/10.1007/s10439-020-02546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02546-5

Keywords

Navigation