Skip to main content
Log in

A Temperature-Dependent, Variable-Stiffness Endoscopic Robotic Manipulator with Active Heating and Cooling

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In flexible endoscopy, the endoscope needs to be sufficiently flexible to go through the tortuous paths inside the human body and meanwhile be stiff enough to withstand external payloads without unwanted tip bending during operation. Thus, an endoscope whose stiffness can be adjusted on command is needed. This paper presents a novel variable-stiffness manipulator. The manipulator (Ø15 mm) has embedded thermoplastic tubes whose stiffness is tunable through temperature. Temperature is adjusted through joule heat generated by the electrical current supplied to the stainless steel coils and an active air-cooling mechanism. Tests and modeling were conducted to characterize the performance of the design. The manipulator has a high stiffness-changing ratio (22) between rigid and flexible states while that of its commercial Olympus counterpart is only 1.59. The active cooling time is 11.9 s while that of passive ambient cooling is 100.3 s. The thermal insulation layer (Aerogel) keeps the temperature of the outer surface within the safe range (below 41 °C). The models can describe the heating and cooling processes with root mean square errors ranging from 0.6 to 1.3 °C. The results confirm the feasibility of a variable-stiffness endoscopic manipulator with high stiffness-changing ratio, fast mode-switching, and safe thermal insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alambeigi, F., R. Seifabadi, and M. Armand. A continuum manipulator with phase changing alloy. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 758–764, 2016.

  2. Beasley, R. A. Medical robots: current systems and research directions. J. Robot. 2012:14, 2012.

    Google Scholar 

  3. Blanc, L., A. Delchambre, and P. Lambert. Flexible medical devices: review of controllable stiffness solutions. Actuators 6:23, 2017.

    Article  Google Scholar 

  4. Cao, L., X. Li, P. T. Phan, A. Tiong, J. Liu, and S. Phee. A novel robotic suturing system for flexible endoscopic surgery. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 1514–1520, 2019.

  5. Chautems C., A. Tonazzini, D. Floreano, and B. J. Nelson. A variable stiffness catheter controlled with an external magnetic field. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 181–186, 2017.

  6. Chenal, T. P., J. C. Case, J. Paik, and R. K. Kramer. Variable stiffness fabrics with embedded shape memory materials for wearable applications. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE, pp. 2827–2831, 2014.

  7. Cheng, W. B., Y. Y. Di, E. M. Zhang, M. A. Moser, S. Kanagaratnam, L. Y. Korman, N. Sarvazyan, and W. J. Zhang. Modeling and in vitro experimental validation for kinetics of the colonoscope in colonoscopy. Ann. Biomed. Eng. 41:1084–1093, 2013.

    Article  Google Scholar 

  8. Cheng, W. B., M. A. Moser, S. Kanagaratnam, and W. J. Zhang. Overview of upcoming advances in colonoscopy. Dig. Endosc. 24:1–6, 2012.

    Article  Google Scholar 

  9. Cianchetti, M., T. Ranzani, G. Gerboni, I. De Falco, C. Laschi and A. Menciassi. STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3576–3581, 2013.

  10. De Falco, I., M. Cianchetti, and A. Menciassi. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspiration Biomimetics 12:056008, 2017.

    Article  Google Scholar 

  11. Degani, A., H. Choset, A. Wolf, and M. Zenati. Highly articulated robotic probe for minimally invasive surgery. In: 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Proceedings IEEE, pp. 4167–4172, 2006.

  12. Hu, X., L. Cao, Y. Luo, A. Chen, E. Zhang, and W. J. Zhang. A novel methodology for comprehensive modeling of the kinetic behavior of steerable catheters. IEEE/ASME Trans. Mechatron. 24:1785–1797, 2019.

    Article  Google Scholar 

  13. Hu, X., and A. Chen. Steerable catheters for minimally invasive surgery: a review and future directions. 23:21–41, 2018.

    Google Scholar 

  14. Kim, Y., S. Cheng, S. Kim, and K. Iagnemma. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Trans. Rob. 30:382–395, 2014.

    Article  Google Scholar 

  15. Kreith, F., R. M. Manglik, and M. S. Bohn. Principles of Heat Transfer. Singapore: Cengage Learning, 2012.

    Google Scholar 

  16. Lai, W., L. Cao, Z. Xu, P. T. Phan, P. Shum and S. J. Phee. Distal end force sensing with optical fiber bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–5, 2018.

  17. Le, H. M., L. Cao, T. N. Do, and S. J. Phee. Design and modelling of a variable stiffness manipulator for surgical robots. Mechatronics 53:109–123, 2018.

    Article  Google Scholar 

  18. Li, J., X. Li, J. Wang, Y. Xing, S. Wang, and X. Ren. Design and evaluation of a variable stiffness manual operating platform for laparoendoscopic single site surgery (LESS). Int. J. Med. Robot. Comput. Assist. Surg. 13(4):e1797, 2017.

    Article  Google Scholar 

  19. Li, X., L. Cao, A. M. H. Tiong, P. T. Phan, and S. J. Phee. Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning. Mech. Mach. Theory 134:323–337, 2019.

    Article  CAS  Google Scholar 

  20. Loeve, A., P. Breedveld, and J. Dankelman. Scopes too flexible and too stiff. IEEE Pulse 1:26–41, 2010.

    Article  Google Scholar 

  21. Loeve, A. J., D. H. Plettenburg, P. Breedveld, and J. Dankelman. Endoscope shaft-rigidity control mechanism: “FORGUIDE”. IEEE Trans. Biomed. Eng. 59:542–551, 2012.

    Article  Google Scholar 

  22. Nilsson, J. W., and S. A. Riedel. Electric Circuits. Upper Saddle River: Prentice Hall, p. 1030, 1999.

    Google Scholar 

  23. Olson, G. Medical devices with variable stiffness. Google Patents, 2013.

  24. Phee, S. J., N. Reddy, P. W. Y. Chiu, P. Rebala, G. V. Rao, Z. Wang, Z. Sun, J. Y. Y. Wong, and K. Y. Ho. Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin. Gastroenterol. Hepatol. 10:1117–1121, 2012.

    Article  Google Scholar 

  25. Rattner, D., and A. Kalloo. ASGE/SAGES working group on natural orifice translumenal endoscopic surgery. Surg. Endosc. 20:329–333, 2006.

    Article  CAS  Google Scholar 

  26. Tadesse, Y., N. Thayer, and S. Priya. Tailoring the response time of shape memory alloy wires through active cooling and pre-stress. J. Intell. Mater. Syst. Struct. 21:19–40, 2010.

    Article  Google Scholar 

  27. Vitiello, V., S. L. Lee, T. P. Cundy, and G. Z. Yang. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6:111–126, 2013.

    Article  Google Scholar 

  28. Wehrmeyer, J. A., J. A. Barthel, J. P. Roth, and T. Saifuddin. Colonoscope flexural rigidity measurement. Med. Biol. Eng. Comput. 36:475–479, 1998.

    Article  CAS  Google Scholar 

  29. Yagi, A., K. Matsumiya, K. Masamune, H. Liao, and T. Dohi. Rigid-Flexible Outer Sheath Model Using Slider Linkage Locking Mechanism and Air Pressure for Endoscopic Surgery. Berlin: Springer, pp. 503–510, 2006.

    Google Scholar 

  30. Yalcintas, M., and H. Dai. Magnetorheological and electrorheological materials in adaptive structures and their performance comparison. Smart Mater. Struct. 8:560, 1999.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation (NRF) Singapore through the NRF Investigatorship Grant (NRFI2016-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Lin.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (MP4 25010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H.M., Phan, P.T., Lin, C. et al. A Temperature-Dependent, Variable-Stiffness Endoscopic Robotic Manipulator with Active Heating and Cooling. Ann Biomed Eng 48, 1837–1849 (2020). https://doi.org/10.1007/s10439-020-02495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02495-z

Keywords

Navigation