Skip to main content
Log in

Measuring Human Hemolysis Clinically and in Extreme Environments Using Endogenous Carbon Monoxide Elimination

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The measure of hemolysis in humans is clinically important. Here we describe methods using a gas chromatograph equipped with a reduction gas detector to detect the human analyte carbon monoxide (CO) that were developed for the extreme environment of the International Space Station. These methods can be adapted to in-hospital use for clinical care with characteristics that may surpass existing measures of hemolysis. We demonstrate improved performance over previous-generation methods in terms of reproducibility, accuracy, control for physical and intervening factors to quantitatively assess hemolysis rates at unprecedented levels. The presented measure of hemolysis using CO elimination is based on a different physiological approach that can complement and augment existing detection tools. In addition to their suitability for extreme environments, the methods present distinctive advantages over existing markers for the diagnosis, monitoring and response to treatment of hemolytic anemia. These methods have the potential to fulfill a wide range of research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CO:

Carbon monoxide

RBC:

Red blood cell

Hb:

Hemoglobin

EC:

Electrochemical

MSD:

Mass spectroscopic detection

GC:

Gas chromatography

RGD:

Reduction gas detection

ppb:

Parts per billion

ISS:

International Space Station

SS:

Stainless steel

Micro-QT valve:

Micro-QT™ Valve to Luer-Lok w/Silonite™, Entech Instruments

BTPS:

Body temperature pressure saturated

References

  1. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114:297–316, 2004.

    Article  Google Scholar 

  2. Ametek TA3000R. AMETEK Process Instruments, Ametek Inc., pp. 1–4, 2004. http://pdf.directindustry.com/pdf/ametek-process-instruments/ta3000/14271-744425.html. Accessed 7 Nov 2018.

  3. Barcellini, W., and B. Fattizzo. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis. Markers 2015:635670, 2015.

    Article  CAS  Google Scholar 

  4. Berlin, N. I. Diagnosis and classification of the polycythemias. Semin. Hematol. 12:339–351, 1975.

    CAS  PubMed  Google Scholar 

  5. Capnia CoSense ETCO Monitor. http://www.capnia.com/products/cosense-overview/. Accessed 7 Nov 2018.

  6. Castillo Cuadrado, M. E., V. K. Bhutani, J. L. Aby, H. J. Vreman, R. J. Wong, and D. K. Stevenson. Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr. 104:e279–e282, 2015.

    Article  CAS  Google Scholar 

  7. Coburn, R. F. Endogenous carbon monoxide production. N. Engl. J. Med. 282:207–209, 1970.

    Article  CAS  Google Scholar 

  8. Coburn, R. F. The measurement of endogenous carbon monoxide production. J. Appl. Physiol. 112:1949–1955, 2012.

    Article  CAS  Google Scholar 

  9. Damulewicz, M., A. Loboda, A. Jozkowicz, J. Dulak, and E. Pyza. Interactions between the circadian clock and heme oxygenase in the retina of Drosophila melanogaster. Mol. Neurobiol. 54:4953–4962, 2017.

    Article  CAS  Google Scholar 

  10. Dean, L. The ABO blood group. In: Blood Groups and Red Cell Antigens. Bethesda: National Center for Biotechnology Information (US), 2005.

  11. Dubert, M., J. Elion, A. Tolo, D. A. Diallo, S. Diop, I. Diagne, et al. Degree of anemia, indirect markers of hemolysis, and vascular complications of sickle cell disease in Africa. Blood 130:2215–2223, 2017.

    Article  CAS  Google Scholar 

  12. EURACHEM. Quantifying Uncertainty in Analytical Measurement (2nd ed.). Helsinki: EURACHEM/CITAC Working Group, 2000.

    Google Scholar 

  13. Föller, M., S. M. Huber, and F. Lang. Erythrocyte programmed cell death. IUBMB Life 60:661–668, 2008.

    Article  Google Scholar 

  14. Fowler, W. S. Lung function studies; the respiratory dead space. Am. J. Physiol. 154:405–416, 1948.

    Article  CAS  Google Scholar 

  15. Ghorbani, R., A. Blomberg, and F. M. Schmidt. Modeling pulmonary gas exchange and single-exhalation profiles of carbon monoxide. Front. Physiol. 9:927, 2018.

    Article  Google Scholar 

  16. Ghorbani, R., and F. M. Schmidt. Fitting of single-exhalation profiles using a pulmonary gas exchange model-application to carbon monoxide. J. Breath Res. 13:026001, 2019.

    Article  CAS  Google Scholar 

  17. Hall, J. E. Guyton and Hall Textbook of Medical Physiology (13th ed.). Philadelphia: Elsevier, 2016.

    Google Scholar 

  18. Hampson, N. B. Carboxyhemoglobin elevation due to hemolytic anemia. J. Emerg. Med. 33:17–19, 2007.

    Article  Google Scholar 

  19. Handin, R., S. E. Lux, and T. P. Stossel. Blood: Principles and Practice of Hematology. Philadelphia: Lippincott Williams & Wilkins, 2003.

    Google Scholar 

  20. Kaasik, K., and C. C. Lee. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471, 2004.

    Article  CAS  Google Scholar 

  21. Kato, G. J., V. McGowan, R. F. Machado, J. A. Little, J. Taylor, C. R. Morris, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 107:2279–2285, 2006.

    Article  CAS  Google Scholar 

  22. Klemz, R., S. Reischl, T. Wallach, N. Witte, K. Jürchott, S. Klemz, et al. Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Nat. Struct. Mol. Biol. 24:15–22, 2017.

    Article  CAS  Google Scholar 

  23. Knutson, M., and M. Wessling-Resnick. Iron metabolism in the reticuloendothelial system. Crit. Rev. Biochem. Mol. Biol. 38:61–88, 2003.

    Article  CAS  Google Scholar 

  24. Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Natl Bur. Stand. 70C(4):262, 1966.

    Google Scholar 

  25. Landaw, S. A., E. W. Callahan, and R. Schmid. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J. Clin. Investig. 49:914–925, 1970.

    Article  CAS  Google Scholar 

  26. Levitt, D. G., and M. D. Levitt. Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin. Pharmacol. 7:37–56, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marks, G. S., H. J. Vreman, B. E. McLaughlin, J. F. Brien, and K. Nakatsu. Measurement of endogenous carbon monoxide formation in biological systems. Antioxid. Redox Signal. 4:271–277, 2002.

    Article  CAS  Google Scholar 

  28. Rapido, F., G. M. Brittenham, S. Bandyopadhyay, F. L. Carpia, C. L’Acqua, D. J. McMahon, et al. Prolonged red cell storage before transfusion increases extravascular hemolysis. J. Clin. Investig. 127:375–382, 2017.

    Article  Google Scholar 

  29. Risso, A., A. Ciana, C. Achilli, G. Antonutto, and G. Minetti. Neocytolysis: none, one or many? A reappraisal and future perspectives. Front. Physiol. 5:54, 2014.

    Article  Google Scholar 

  30. Steinberg, M. H. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. Sci. World J. 8:1295–1324, 2008.

    Article  Google Scholar 

  31. Tidmarsh, G. F., R. J. Wong, and D. K. Stevenson. End-tidal carbon monoxide and hemolysis. J. Perinatol. 34:577–581, 2014.

    Article  CAS  Google Scholar 

  32. Tracz, M. J., J. Alam, and K. A. Nath. Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18:414–420, 2007.

    Article  CAS  Google Scholar 

  33. Vreman, H. J., D. K. Stevenson, W. Oh, A. A. Fanaroff, L. L. Wright, J. A. Lemons, et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin. Chem. 40:1927–1933, 1994.

    Article  CAS  Google Scholar 

  34. Yao, L., Z. Liu, J. Zhu, B. Li, C. Chai, and Y. Tian. Higher serum level of myoglobin could predict more severity and poor outcome for patients with sepsis. Am. J. Emerg. Med. 34(6):948–952, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Doug Worthy and Michele Rauh from the Canadian Green House Gases program, Kate Culliton, Theresa Backlund, Odette Laneuville for experimentation with the methods described. This work was supported in part by Canadian Space Agency through Contracts and Grant Numbers 9F053-100597, 9F008-140254 and 15EXPBEDST.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Trudel.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahin, N., Louati, H. & Trudel, G. Measuring Human Hemolysis Clinically and in Extreme Environments Using Endogenous Carbon Monoxide Elimination. Ann Biomed Eng 48, 1540–1550 (2020). https://doi.org/10.1007/s10439-020-02473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02473-5

Keywords

Navigation