Skip to main content

Advertisement

Log in

Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer

  • S.I. : Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aburjania, Z., S. Jang, J. Whitt, R. Jaskula-Stzul, H. Chen, and J. B. Rose. The role of Notch3 in cancer. Oncologist 23:1–12, 2018.

    Google Scholar 

  2. Arend, R. C., A. I. Londoño-Joshi, A. Gangrade, A. A. Katre, C. Kurpad, Y. Li, R. S. Samant, P.-K. Li, C. N. Landen, E. S. Yang, B. Hidalgo, R. D. Alvarez, J. M. Straughn, A. Forero, and D. J. Buchsbaum. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 7:86803–86815, 2016.

    PubMed  PubMed Central  Google Scholar 

  3. Arruebo, M., M. Valladares, and A. Gonzalez-Fernandez. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater. 2009. https://doi.org/10.1155/2009/439389.

    Article  Google Scholar 

  4. Aste-Amezaga, M., et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5:e9094, 2010.

    PubMed  PubMed Central  Google Scholar 

  5. Bartscherer, K., N. Pelte, D. Ingelfinger, and M. Boutros. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533, 2006.

    CAS  PubMed  Google Scholar 

  6. Basson, M. A. Signaling in cell differentiation and morphogenesis. Cold Spring Harb. Perspect. Biol. 4:a008151, 2012.

    PubMed  PubMed Central  Google Scholar 

  7. Bhattacharyya, J., X.-R. Ren, R. A. Mook, J. Wang, I. Spasojevic, R. T. Premont, X. Li, A. Chilkoti, and W. Chen. Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale 9:12709–12717, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Biktasova, A. K., D. F. Dudimah, R. V. Uzhachenko, K. Park, A. Akhter, R. R. Arasada, J. V. Evans, S. V. Novitskiy, E. E. Tchekneva, D. P. Carbone, A. Shanker, and M. M. Dikov. Multivalent forms of the Notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Cancer Res. 75:4728–4742, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Borah, A., V. Palaninathan, A. R. Girija, S. Balasubramanian, A. K. Rochani, T. Maekawa, and D. S. Kumar. Poly-lactic-co-glycolic acid nanoformulation of small molecule antagonist GANT61 for cancer annihilation by modulating hedgehog pathway. NanoWorld J. 3:1–10, 2017.

    CAS  Google Scholar 

  10. Borggrefe, T., M. Lauth, A. Zwijsen, D. Huylebroeck, F. Oswald, and B. D. Giaimo. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta 303–313:2016, 1863.

    Google Scholar 

  11. Briscoe, J., and P. P. Therond. The mechanisms of Hedgehog signalling and its roles in development and disease. Nature 14:416–429, 2013.

    Google Scholar 

  12. Burke, A. R., R. N. Singh, D. L. Carroll, F. M. Torti, and S. V. Torti. Targeting cancer stem cells with nanoparticle-enabled therapies. J. Mol. Biomark. Diagn. 2013. https://doi.org/10.4172/2155-9929.S8-003.

    Article  Google Scholar 

  13. Carballo, G. B., J. R. Honorato, G. P. F. de Lopes, and T. C. L. de Sampaio e Spohr. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 16:1–15, 2018.

    Google Scholar 

  14. Che-Ming, H. J., L. Zhang, S. Aryal, C. Cheung, R. H. Fang, and L. Zhang. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 108:10980–10985, 2011.

    Google Scholar 

  15. Chen, R. P., and D. Blackstock. Dynamic protein assembly by programmable DNA strand displacement. Nat. Chem. 2018. https://doi.org/10.1038/s41557-018-0016-9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, J. K., J. Taipale, M. K. Cooper, and P. A. Beachy. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16:2743–2748, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chenna, V., C. Hu, D. Pramanik, B. T. Aftab, C. Karikari, N. R. Campbell, S.-M. Hong, M. Zhao, M. A. Rudek, S. R. Khan, C. M. Rudin, and A. Maitra. A polymeric nanoparticle encapsulated small molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol. Cancer Ther. 11:165–173, 2012.

    CAS  PubMed  Google Scholar 

  18. Chim, C. S., R. Pang, T. K. Fung, C. L. Choi, and R. Liang. Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 21:2527–2536, 2007.

    CAS  PubMed  Google Scholar 

  19. Cook, N., B. Basu, D.-M. Smith, A. Gopinathan, J. Evans, W. P. Steward, D. Palmer, D. Propper, B. Venugopal, M. Hategan, D. A. Anthoney, L. V. Hampson, M. Nebozhyn, D. Tuveson, H. Farmer-Hall, H. Turner, R. McLeod, S. Halford, and D. Jodrell. A phase I trial of the gamma-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 118:793–801, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Courtois-Cox, S., S. L. Jones, and K. Cichowski. Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809, 2008.

    CAS  PubMed  Google Scholar 

  21. Dai, Q., C. Walkey, and W. C. W. Chan. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. 53:5093–5096, 2014.

    CAS  Google Scholar 

  22. Dai, Q., S. Wilhelm, D. Ding, A. M. Syed, S. Sindhwani, Y. Zhang, Y. Y. Chen, P. MacMillan, and W. C. W. Chan. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12:8423–8435, 2018.

    CAS  PubMed  Google Scholar 

  23. Deng, X., M. Cao, J. Zhang, K. Hu, Z. Yin, Z. Zhou, X. Xiao, Y. Yang, W. Sheng, Y. Wu, and Y. Zeng. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344, 2014.

    CAS  PubMed  Google Scholar 

  24. di Magliano, M. P., and M. Hebrok. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. 3:903–911, 2003.

    CAS  Google Scholar 

  25. Dominska, M., and D. M. Dykxhoorn. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123:1183–1189, 2010.

    CAS  PubMed  Google Scholar 

  26. Elzi, D. J., M. Song, K. Hakala, S. T. Weintraub, and Y. Shiio. Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol. Cell. Biol. 32:4388–4399, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Espinoza, I., and L. Miele. Notch inhibitors for cancer treatment. Pharmacol. Ther. 139:95–110, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fay, B. L., J. R. Melamed, and E. S. Day. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. Int. J. Nanomed. 10:6931–6941, 2015.

    CAS  Google Scholar 

  29. Ganesh, S., M. Koser, W. Cyr, G. Chopda, J. Tao, X. Shui, B. Ying, D. Chen, P. Pandya, E. Chipumuro, Z. Siddiquee, K. Craig, C. Lai, H. Dudek, S. Monga, W. Wang, B. D. Brown, and M. Abrams. Direct pharmacological inhibition of beta-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 15:2143–2154, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghoshal, A., U. Goswami, A. K. Sahoo, A. Chattopadhyay, and S. S. Ghosh. Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer theranostics. ACS Biomater. Sci. Eng. 1:1256–1266, 2015.

    CAS  PubMed  Google Scholar 

  31. Goyal, R., C. H. Kapadia, J. R. Melamed, R. S. Riley, and E. S. Day. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cell. Mol. Bioeng. 11:383–396, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta, B., T. S. Levchenko, and V. P. Torchilin. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57:637–651, 2005.

    CAS  PubMed  Google Scholar 

  33. Habets, R. A., C. E. de Bock, L. Serneels, I. Lodewijckx, D. Verbeke, D. Nittner, R. Narlawar, S. Demeyer, J. Dooley, A. Liston, T. Taghon, J. Cools, and B. de Strooper. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci. Transl. Med. 29:11, 2019.

    Google Scholar 

  34. Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.

    CAS  PubMed  Google Scholar 

  35. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.

    CAS  PubMed  Google Scholar 

  36. Harrison, H., G. Farnie, S. J. Howell, R. E. Rock, S. Stylianou, K. R. Brennan, N. J. Bundred, and R. B. Clarke. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70:709–719, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashi, T., K. M. Gust, A. W. Wyatt, A. Goriki, W. Jager, S. Awrey, N. Li, H. Z. Oo, M. Altamirano-Dimas, R. Buttyan, L. Fazli, A. Matsubara, and P. C. Black. Not all NOTCH Is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin. Cancer Res. 22:2981–2993, 2016.

    CAS  PubMed  Google Scholar 

  38. Hong, I.-S., G.-B. Jang, H.-Y. Lee, and J.-S. Nam. Targeting cancer stem cells by using the nanoparticles. Int. J. Nanomed. 10:251–260, 2015.

    CAS  Google Scholar 

  39. Houschyar, K. S., C. Tapking, M. R. Borrelli, D. Popp, D. Duscher, Z. N. Maan, M. P. Chelliah, J. Li, K. Harati, C. Wallner, S. Rein, D. Pförringer, G. Reumuth, G. Grieb, S. Mouraret, M. Dadras, J. M. Wagner, J. Y. Cha, F. Siemers, M. Lehnhardt, and B. Behr. Wnt pathway in bone repair and regeneration—what do we know so far. Front. Cell Dev. Biol. 6:1–13, 2019.

    Google Scholar 

  40. Hu, K., H. Zhou, Y. Liu, Z. Liu, J. Liu, J. Tang, J. Li, J. Zhang, W. Sheng, Y. Zhao, Y. Wu, and C. Chen. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7:8607–8618, 2015.

    CAS  PubMed  Google Scholar 

  41. Hua, S., M. B. C. de Matos, J. M. Metselaar, and G. Storm. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9:1–14, 2018.

    Google Scholar 

  42. Huang, Y., L. Lin, A. Shanker, A. Malhotra, L. Yang, M. M. Dikov, and D. P. Carbone. Resuscitating cancer immunosurveillance: selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Res. 71:6122–6132, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang, W., Z. Liu, G. Zhou, J. Ling, A. Tian, and N. Sun. Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro. Tumor Biol. 37:10365–10374, 2016.

    CAS  Google Scholar 

  44. Hyman, J. M., A. J. Firestone, V. M. Heine, Y. Zhao, C. A. Ocasio, K. Han, M. Sun, P. G. Rack, S. Sinha, J. J. Wu, D. E. Solow-Cordero, J. Jiang, D. H. Rowitch, and J. K. Chen. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. PNAS 106:14132–14137, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ichimura, N., N. Yamamoto, M. Nishikawa, H. Furue, Y. Kondo, and H. Hibi. Notch3 is frequently downregulated in oral cancer. J. Oral Maxillofac. Surg. Med. Pathol. 29:504–510, 2017.

    Google Scholar 

  46. Ingallina, C., P. M. Costa, F. Ghirga, J. T. Wang, S. Berardozzi, N. Hodgins, P. Infante, S. M. Pollard, B. Botta, and K. T. Al-Jamal. Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine 12:711–728, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ingham, P. W., and A. P. McMahon. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15:3059–3087, 2001.

    CAS  PubMed  Google Scholar 

  48. Jensen, S. A., E. S. Day, C. H. Ko, L. A. Hurley, J. P. Luciano, F. M. Kouri, T. J. Merkel, A. J. Luthi, P. C. Patel, J. I. Cutler, W. L. Daniel, A. W. Scott, M. W. Rotz, T. J. Meade, D. A. Giljohann, C. A. Mirkin, and A. H. Stegh. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5:209ra152, 2013.

    PubMed  PubMed Central  Google Scholar 

  49. Jiang, J., and C. Hui. Hedgehog signaling in development and cancer. Dev. Cell 15:801–812, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, T., B. Zhang, L. Zhang, X. Wu, H. Li, S. Shen, Z. Luo, X. Liu, Y. Hu, Z. Pang, and X. Jiang. Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Artif. Cells Nanomed. Biotechnol. 46:S1088–S1101, 2018.

    Google Scholar 

  51. Karamboulas, C., and L. Ailles. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta 2481–2495:2013, 1830.

    Google Scholar 

  52. Kikuchi, A., H. Yamamoto, A. Sato, and S. Matsumoto. New insights into the mechanism of Wnt signaling pathway activation. International Review of Cell and Molecular Biology 2:21–71, 2011.

    Google Scholar 

  53. Kim, M., and E. Jho. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep. 47:540–545, 2014.

    PubMed  PubMed Central  Google Scholar 

  54. Kou, L., J. Sun, Y. Zhai, and Z. He. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J. Pharm. Sci. 8:1–10, 2013.

    CAS  Google Scholar 

  55. Kwok, G. T., J. T. Zhao, J. Weiss, N. Mugridge, H. Brahmbhatt, J. A. MacDiarmid, B. G. Robinson, and S. B. Sidhu. Translational applications of microRNAs in cancer, and therapeutic implications. Non-coding RNA Res. 2:143–150, 2017.

    Google Scholar 

  56. Lim, S. I., C. I. Lukianov, and J. A. Champion. Self-assembled protein nanocarrier for intracellular delivery of antibody. J. Control. Release 249:1–10, 2017.

    CAS  PubMed  Google Scholar 

  57. Liu, Q., H. Zhu, K. Tiruthani, L. Shen, F. Chen, K. Gao, X. Zhang, L. Hou, D. Wang, R. Liu, and L. Huang. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano 12:1250–1261, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lustig, B., B. Jerchow, M. Sachs, S. Weiler, T. Pietsch, U. Karsten, M. van de Wetering, H. Clevers, P. M. Schlag, W. Birchmeier, and J. Behrens. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22:1184–1193, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma, C., L. Shi, Y. Huang, L. Shen, H. Peng, X. Zhu, and G. Zhou. Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer. Biomater. Sci. 5:494–501, 2017.

    CAS  PubMed  Google Scholar 

  60. Madan, B., M. J. Mcdonald, G. E. Foxa, C. R. Diegel, B. O. Williams, and D. M. Virshup. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 6:17, 2018.

    PubMed  PubMed Central  Google Scholar 

  61. Mamaeva, V., R. Niemi, M. Beck, E. Özliseli, D. Desai, S. Landor, T. Gronroos, P. Kronqvist, I. K. N. Pettersen, E. McCormack, J. M. Rosenholm, M. Linden, and C. Sahlgren. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol. Ther. 24:926–936, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mamaeva, V., J. M. Rosenholm, L. T. Bate-Eya, L. Bergman, E. Peuhu, A. Duchanoy, L. E. Fortelius, S. Landor, D. M. Toivola, M. Lindén, and C. Sahlgren. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol. Ther. 19:1538–1546, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McDermott, S. P., and M. S. Wicha. Targeting breast cancer stem cells. Mol. Oncol. 4:404–419, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McGowan, P. M., C. Simedrea, E. J. Ribot, P. J. Foster, D. Palmieri, P. S. Steeg, A. L. Allan, and A. F. Chambers. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol. Cancer Res. 9:834–845, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Melamed, J. R., S. A. Ioele, A. J. Hannum, V. M. Ullman, and E. S. Day. Polyethylenimine-spherical nucleic acid nanoparticles against gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol. Pharmacol. 15:5135–5145, 2018.

    CAS  Google Scholar 

  66. Melamed, J. R., N. L. Kreuzberger, R. Goyal, and E. S. Day. Spherical nucleic acid architecture can improve the efficacy of polycation-mediated siRNA delivery. Mol. Ther. 12:207–219, 2018.

    CAS  Google Scholar 

  67. Melamed, J. R., J. T. Morgan, S. A. Ioele, J. P. Gleghorn, J. Sims-Mourtada, and E. S. Day. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget 9:27000–27015, 2018.

    PubMed  PubMed Central  Google Scholar 

  68. Mendes, M., J. J. Sousa, A. Pais, and C. Vitorino. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 10:1–47, 2018.

    Google Scholar 

  69. Michaud, N. R., Y. Wang, K. A. McEachern, J. J. Jordan, A. M. Mazzola, A. Hernandez, S. Jalla, J. W. Chesebrough, M. J. Hynes, M. A. Belmonte, L. Wang, J. S. Kang, J. Jovanovic, N. Laing, D. W. Jenkins, E. Hurt, M. Liang, C. Frantz, R. E. Hollingsworth, D. M. Simeone, D. C. Blakey, and V. Bedian. Novel neutralizing Hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine Hedgehog signaling. Mol. Cancer Ther. 13:386–398, 2014.

    CAS  PubMed  Google Scholar 

  70. Mie, M., F. Takahashi, H. Funabashi, Y. Yanagida, M. Aizawa, and E. Kobatake. Intracellular delivery of antibodies using TAT fusion protein A. Biochem. Biophys. Res. Commun. 310:730–734, 2003.

    CAS  PubMed  Google Scholar 

  71. Miller-Kleinhenz, J., X. Guo, W. Qian, H. Zhou, E. N. Bozeman, L. Zhu, X. Ji, Y. A. Wang, T. Styblo, R. O’Regan, H. Mao, and L. Yang. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 152:47–62, 2018.

    CAS  PubMed  Google Scholar 

  72. Morgan, K. M., B. S. Fischer, F. Y. Lee, J. J. Shah, J. R. Bertino, J. Rosenfeld, A. Singh, H. Khiabanian, and S. R. Pine. Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol. Cancer Ther. 16:2759–2770, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Motawi, T. K., S. A. El-Maraghy, A. N. ElMeshad, O. M. Nady, and O. A. Hammam. Cromolyn chitosan nanoparticles as a novel protective approach for colorectal cancer. Chem. Biol. Interact. 275:1–12, 2017.

    CAS  PubMed  Google Scholar 

  74. Munsell, E. V., N. L. Ross, and M. O. Sullivan. Journey to the center of the cell: current nanocarrier design strategies targeting biopharmaceuticals to the cytoplasm and nucleus. Curr. Pharm. Des. 22:1227–1244, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakamura, M., M. Kubo, K. Yanai, Y. Mikami, M. Ikebe, S. Nagai, K. Yamaguchi, M. Tanaka, and M. Katano. Anti-patched-1 antibodies suppress Hedgehog signaling pathway and pancreatic cancer proliferation. Anticancer Res. 27:3743–3748, 2007.

    CAS  PubMed  Google Scholar 

  76. Nayak, A., S. R. Satapathy, D. Das, S. Siddharth, N. Tripathi, P. V. Bharatam, and C. N. Kundu. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci. Rep. 2016. https://doi.org/10.1038/srep20600.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nayak, A., S. Siddharth, S. Das, D. Nayak, C. Sethy, and C. N. Kundu. Nanoquinacrine caused apoptosis in oral cancer stem cells by disrupting the interaction between GLI1 and β catenin through activation of GSK3β. Toxicol. Appl. Pharmacol. 330:53–64, 2017.

    CAS  PubMed  Google Scholar 

  78. Nieuwenhuis, E., and C. Hui. Hedgehog signaling and congenital malformations. Clin. Genet. 67:193–208, 2004.

    Google Scholar 

  79. Nusslein-Volhard, C., and E. Wieschaus. Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801, 1980.

    CAS  PubMed  Google Scholar 

  80. O’Toole, S. A., D. A. Machalek, R. F. Shearer, E. K. A. Millar, R. Nair, P. Schofield, D. McLeod, C. L. Cooper, C. M. McNeil, A. McFarland, A. Nguyen, C. J. Ormandy, M. R. Qiu, B. Rabinovich, L. G. Martelotto, D. Vu, G. E. Hannigan, E. A. Musgrove, D. Christ, R. L. Sutherland, D. N. Watkins, and A. Swarbrick. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 71:4002–4014, 2011.

    PubMed  Google Scholar 

  81. Opačak-Bernardi, T., J. S. Ryu, and D. Raucher. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells. J. Drug Target. 25:523–531, 2017.

    PubMed  Google Scholar 

  82. Pannuti, A., K. Foreman, P. Rizzo, C. Osipo, T. Golde, B. Osborne, and L. Miele. Targeting Notch to target cancer stem cells. Clin. Cancer Res. 16:3141–3153, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peer, E., S. Tesanovic, and F. Aberger. Next-generation Hedgehog/GLI pathway inhibitors for cancer therapy. Cancers (Basel). 11:1–20, 2019.

    Google Scholar 

  84. Pelkmans, L., J. Kartenbeck, and A. Helenius. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3:473–484, 2001.

    CAS  PubMed  Google Scholar 

  85. Ran, Y., F. Hossain, A. Pannuti, C. B. Lessard, G. Z. Ladd, J. I. Jung, L. M. Minter, B. A. Osborne, L. Miele, and T. E. Golde. Gamma-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9:950–966, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ray, P., M. Confeld, P. Borowicz, T. Wang, S. Mallik, and M. Quadir. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf. B 174:126–135, 2019.

    CAS  Google Scholar 

  87. Rejman, J., A. Bragonzi, and M. Conese. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 12:468–474, 2005.

    CAS  PubMed  Google Scholar 

  88. Riley, R. S., and E. S. Day. Frizzled7 Antibody-functionalized nanoshells enable multivalent binding for wnt signaling inhibition in triple negative breast cancer cells. Small 13:1700544, 2017.

    Google Scholar 

  89. Ring, A., Y.-M. Kim, and M. Kahn. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev. Rep. 10:512–525, 2014.

    CAS  PubMed  Google Scholar 

  90. Ristorcelli, E., E. Beraud, S. Mathieu, D. Lombardo, and A. Verine. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int. J. Cancer 125:1016–1026, 2009.

    CAS  PubMed  Google Scholar 

  91. Rubin, L. L., and F. J. de Sauvage. Targeting the Hedgehog pathway in cancer. Nature 5:1026–1033, 2006.

    CAS  Google Scholar 

  92. Sancho, R., C. A. Cremona, and A. Behrens. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep. 16:571–581, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanna, V., N. Pala, and M. Sechi. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9:467–483, 2014.

    CAS  Google Scholar 

  94. Sato, C., G. Zhao, and M. X. G. Ilagen. An overview of Notch signaling in adult tissue renewal and maintenance. Curr. Alzheimer Res. 9:227–240, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Scott, A. M., J. D. Wolchok, and L. J. Old. Antibody therapy of cancer. Nat. Rev. Cancer 12:278–287, 2012.

    CAS  PubMed  Google Scholar 

  96. Shah, M. Y., A. Ferrajoli, A. K. Sood, G. Lopez-Berestein, and G. A. Calin. microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34–42, 2016.

    PubMed  PubMed Central  Google Scholar 

  97. Sharma, A., A. N. Paranjape, A. Rangarajan, and R. R. Dighe. A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol. Cancer Ther. 11:77–87, 2012.

    CAS  PubMed  Google Scholar 

  98. Slastnikova, T. A., A. V. Ulasov, A. A. Rosenkranz, and A. S. Sobolev. Targeted intracellular delivery of antibodies: the state of the art. Front. Pharmacol. 9:1–21, 2018.

    Google Scholar 

  99. Speiser, J., K. Foreman, E. Drinka, C. Godellas, C. Perez, A. Salhadar, C. Ersahin, and P. Rajan. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int. J. Surg. Pathol. 20:139–145, 2012.

    PubMed  Google Scholar 

  100. Steg, A. D., A. A. Katre, B. Goodman, H.-D. Han, A. M. Nick, R. L. Stone, R. L. Coleman, R. D. Alvarez, G. Lopez-Berestein, A. K. Sood, and C. N. Landen. Targeting the Notch ligand Jagged1 in both tumor cells and stroma in ovarian cancer. Clin. Cancer Res. 17:5674–5686, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stylianou, S., R. B. Clarke, and K. Brennan. Aberrant activation of Notch signaling in human breast cancer. Cancer Res. 66:1517–1526, 2006.

    CAS  PubMed  Google Scholar 

  102. Sykes, E. A., J. Chen, G. Zheng, and W. C. W. Chan. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8:5696–5706, 2014.

    CAS  PubMed  Google Scholar 

  103. Taipale, J., and P. A. Beachy. The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354, 2001.

    CAS  PubMed  Google Scholar 

  104. Taipale, J., J. K. Chen, M. K. Cooper, B. Wang, R. K. Mann, L. Milenkovic, M. P. Scott, and P. A. Beachy. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009, 2000.

    CAS  PubMed  Google Scholar 

  105. Takebe, N., P. J. Harris, R. Q. Warren, and S. P. Ivy. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8:97–106, 2011.

    CAS  PubMed  Google Scholar 

  106. Takebe, N., L. Miele, P. J. Harris, W. Jeong, H. Bando, M. Kahn, S. X. Yang, and S. P. Ivy. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12:445–464, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tangudu, N. K., V. K. Verma, T. D. Clemons, S. S. Beevi, T. Hay, G. Mahidhara, M. Raja, R. A. Nair, L. E. Alexander, A. B. Patel, J. Jose, N. M. Smith, B. Zdyrko, A. Bourdoncle, I. Luzinov, K. S. Iyer, A. R. Clarke, and L. D. Kumar. RNA interference using c-Myc—conjugated nanoparticles suppresses breast and colorectal cancer models. Mol. Cancer Ther. 14:1259–1270, 2015.

    CAS  PubMed  Google Scholar 

  108. Tree, D. R. P., J. M. Shulman, R. Rousset, M. P. Scott, D. Gubb, and J. D. Axelrod. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–381, 2002.

    CAS  PubMed  Google Scholar 

  109. Tsukamoto, A. S., R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625, 1988.

    CAS  PubMed  Google Scholar 

  110. Vaidya, A. M., Z. Sun, N. Ayat, A. Schilb, X. Liu, H. Jiang, D. Sun, J. Scheidt, V. Qian, S. He, H. Gilmore, W. P. Schiemann, and Z.-R. Lu. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug. Chem. 30:907–919, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Valcourt, D. M., J. Harris, R. S. Riley, M. Dang, J. Wang, and E. S. Day. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 3:1–18, 2018.

    Google Scholar 

  112. Veeck, J., D. Niederacher, H. An, E. Klopocki, F. Wiesmann, B. Betz, O. Galm, O. Camara, M. Dürst, G. Kristiansen, C. Huszka, R. Knüchel, and E. Dahl. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488, 2006.

    CAS  PubMed  Google Scholar 

  113. Verma, R. K., W. Yu, A. Shrivastava, S. Shankar, and R. K. Srivastava. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice. Sci. Rep. 2016. https://doi.org/10.1038/srep32743.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Verma, R. K., W. Yu, S. P. Singh, S. Shankar, and R. K. Srivastava. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine 11:2061–2070, 2015.

    CAS  PubMed  Google Scholar 

  115. Wan, X., C. Liu, Y. Lin, J. Fu, G. Lu, and Z. Lu. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 26:470–480, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, L., X. Liu, Q. Zhou, M. Sui, Z. Lu, Z. Zhou, J. Tang, Y. Miao, M. Zheng, W. Wang, and Y. Shen. Terminating the criminal collaboration in pancreatic cancer: nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials 144:105–118, 2017.

    CAS  PubMed  Google Scholar 

  117. Wen, X.-F., M. Chen, Y. Wu, M.-N. Chen, A. Glogowska, T. Klonisch, and G.-J. Zhang. Inhibitor of DNA binding 2 inhibits epithelial-mesenchymal transition via up-regulation of Notch3 in breast cancer. Transl. Oncol. 11:1259–1270, 2018.

    PubMed  PubMed Central  Google Scholar 

  118. Wilhelm, S., A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1:16014, 2016.

    CAS  Google Scholar 

  119. Wu, Y., C. Cain-Hom, L. Choy, T. J. Hagenbeek, G. P. de Leon, Y. Chen, D. Finkle, R. Venook, X. Wu, J. Ridgway, D. Schahin-Reed, G. J. Dow, A. Shelton, S. Stawicki, R. J. Watts, J. Zhang, R. Choy, P. Howard, L. Kadyk, M. Yan, J. Zha, C. A. Callahan, S. G. Hymowitz, and C. W. Siebel. Therapeutic antibody targeting of individual Notch receptors. Nat. Lett. 464:1052–1057, 2010.

    CAS  Google Scholar 

  120. Wu, X., H. Chen, and X. Wang. Can lung cancer stem cells be targeted for therapies? Cancer Treat. Rev. 38:580–588, 2012.

    PubMed  Google Scholar 

  121. Wu, F., Y. Zhang, B. Sun, A. P. McMahon, and Y. Wang. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem. Biol. 24:252–280, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, Y., V. Chenna, C. Hu, H.-X. Sun, M. Khan, H. Bai, X.-R. Yang, Q.-F. Zhu, Y.-F. Sun, A. Maitra, J. Fan, and R. A. Anders. Polymeric nanoparticle encapsulated Hedgehog pathway inhibitor HPI-1 (“NanoHHI”) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin. Cancer Res. 18:1291–1302, 2012.

    CAS  PubMed  Google Scholar 

  123. Yang, H., Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, and Y. Liu. Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4:1–10, 2014.

    CAS  Google Scholar 

  124. Yang, R., G. Mondal, D. Wen, and R. I. Mahato. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. Nanomedicine 13:391–401, 2017.

    CAS  PubMed  Google Scholar 

  125. Yauch, R. L., S. E. Gould, S. J. Scales, T. Tang, H. Tian, C. P. Ahn, D. Marshall, L. Fu, T. Januario, D. Kallop, M. Nannini-Pepe, K. Kotkow, J. C. Marsters, Jr, L. L. Rubin, and F. J. de Sauvage. A paracrine requirement for hedgehog signalling in cancer. Nat. Lett. 455:406–411, 2008.

    CAS  Google Scholar 

  126. You, J., J. Zhao, X. Wen, C. Wu, Q. Huang, F. Guan, R. Wu, D. Liang, and C. Li. Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J. Control. Release 202:40–48, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yuan, X., H. Wu, H. Xu, H. Xiong, Q. Chu, S. Yu, G. S. Wu, and K. Wu. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 369:20–27, 2015.

    CAS  PubMed  Google Scholar 

  128. Yue, Z.-S., B. Ruan, J.-L. Duan, H. Han, and L. Wang. The role of the Notch signaling pathway in liver injury and repair. J. Bio-X Res. 1:95–104, 2018.

    Google Scholar 

  129. Zhan, T., N. Rindtorff, and M. Boutros. Wnt signaling in cancer. Oncogene 36:1461, 2017.

    CAS  PubMed  Google Scholar 

  130. Zhao, J., H. Wang, C.-H. Hsiao, D. S.-L. Chow, E. J. Koay, Y. Kang, X. Wen, Q. Huang, Y. Ma, J. A. Bankson, S. E. Ullrich, W. Overwijk, A. Maitra, D. Piwnica-Worms, J. B. Fleming, and C. Li. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials 159:215–228, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhou, P., Y. Cao, X. Liu, T. Yu, Q. Xu, C. You, X. Gao, and Y. Wei. Delivery siRNA with a novel gene vector for glioma therapy by targeting Gli1. Int. J. Nanomed. 13:4781–4793, 2018.

    CAS  Google Scholar 

  132. Zhou, B.-B. S., H. Zhang, M. Damelin, K. G. Geles, J. C. Grindley, and P. B. Dirks. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature 8:806–823, 2009.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under Award Number R35GM119659 and by the National Cancer Institute of NIH under Award Number R01CA211925. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Day.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valcourt, D.M., Dang, M.N., Wang, J. et al. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 48, 1864–1884 (2020). https://doi.org/10.1007/s10439-019-02399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02399-7

Keywords

Navigation