Skip to main content

Advertisement

Log in

An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer. The present study generated various his-tagged, synthetic MPER fragments, which were bound to liposomes containing CoPoP and a synthetic monophosphoryl lipid A (MPLA) and assessed for immunogenicity in mice. MPER peptides with amino acids stretches originating from the membrane insertion point that were at least 25 amino acids in length, had greater 2F5 reactivity and induced stronger antibody responses, compared to shorter ones. Immunization with the lipid-presented MPER elicited stronger antibody responses compared to Alum and Montanide adjuvants, which could recognize recombinant gp41 and gp140 proteins that contained MPER sequences. The induced antibodies neutralized a tier 1A virus that is sensitive to neutralizing antibodies (W61D(TCLA)0.71), but not another tier 1A nor a tier 2 strain. Co-formulation of the MPER peptide with an unrelated malaria protein antigen (Pfs25) that is effectively adjuvanted with liposomes containing CoPoP and MPLA resulted in elicitation of higher MPER antibody levels, but did not improve neutralization, possibly due to interference with proper peptide presentation in the membrane. Murine hybridomas were generated that produced MPER antibodies, but they were non-neutralizing. These results do not show that bnAbs could be generated with MPER peptides and CoPoP liposomes, but do not rule out this possibility with additional improvements to the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aikins, M. E., J. Bazzill, and J. J. Moon. Vaccine nanoparticles for protection against HIV infection. Nanomedicine 12:673–682, 2017.

    Article  CAS  Google Scholar 

  2. Apellániz, B., and J. L. Nieva. The use of liposomes to shape epitope structure and modulate immunogenic responses of peptide vaccines against HIV MPER. Advances in Protein Chemistry and Structural Biology, Elsevier: New York, 2015, pp. 15–54.

    Google Scholar 

  3. Banerjee, S., H. Shi, M. Banasik, H. Moon, W. Lees, Y. Qin, A. Harley, A. Shepherd, and M. W. Cho. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology 505:113–126, 2017.

    Article  CAS  Google Scholar 

  4. Banerjee, S., H. Shi, H. H. Habte, Y. Qin, and M. W. Cho. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology 490:17–26, 2016.

    Article  CAS  Google Scholar 

  5. Bomsel, M., D. Tudor, A. S. Drillet, A. Alfsen, Y. Ganor, M. G. Roger, N. Mouz, M. Amacker, A. Chalifour, L. Diomede, G. Devillier, Z. Cong, Q. Wei, H. Gao, C. Qin, G. B. Yang, R. Zurbriggen, L. Lopalco, and S. Fleury. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 34:269–280, 2011.

    Article  CAS  Google Scholar 

  6. Burton, D. R., R. Ahmed, D. H. Barouch, S. T. Butera, S. Crotty, A. Godzik, D. E. Kaufmann, M. J. McElrath, M. C. Nussenzweig, B. Pulendran, C. N. Scanlan, W. R. Schief, G. Silvestri, H. Streeck, B. D. Walker, L. M. Walker, A. B. Ward, I. A. Wilson, and R. Wyatt. A blueprint for HIV vaccine discovery. Cell Host Microb. 12:396–407, 2012.

    Article  CAS  Google Scholar 

  7. Carravilla, P., A. Cruz, I. Martin-Ugarte, I. R. Oar-Arteta, J. Torralba, B. Apellaniz, J. Pérez-Gil, J. Requejo-Isidro, N. Huarte, and J. L. Nieva. Effects of HIV-1 gp41-derived virucidal peptides on virus-like lipid membranes. Biophys. J. 113:1301–1310, 2017.

    Article  CAS  Google Scholar 

  8. Carter, K. A., S. Shao, M. I. Hoopes, D. Luo, B. Ahsan, V. M. Grigoryants, W. Song, H. Huang, G. Zhang, R. K. Pandey, J. Geng, B. A. Pfeifer, C. P. Scholes, J. Ortega, M. Karttunen, and J. F. Lovell. Porphyrin–phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5:3546, 2014.

    Article  Google Scholar 

  9. Chakrabarti, B., L. Walker, J. Guenaga, A. Ghobbeh, P. Poignard, D. Burton, and R. Wyatt. Direct antibody access to the HIV-1 membrane-proximal external region positively correlates with neutralization sensitivity. J. Virol. 85:8217–8226, 2011.

    Article  CAS  Google Scholar 

  10. Donius, L. R., Y. Cheng, J. Choi, Z.-Y. J. Sun, M. Hanson, M. Zhang, T. M. Gierahn, S. Marquez, M. Uduman, S. H. Kleinstein, D. Irvine, J. C. Love, E. L. Reinherz, and M. Kim. Generation of long-lived bone marrow plasma cells secreting antibodies specific for HIV-1 gp41 MPER in the absence of polyreactivity. J. Virol. 90:8875–8890, 2016.

    Article  CAS  Google Scholar 

  11. Florese, R. H., K. K. Van Rompay, K. Aldrich, D. N. Forthal, G. Landucci, M. Mahalanabis, N. Haigwood, D. Venzon, V. S. Kalyanaraman, M. L. Marthas, and M. Robert-Guroff. Evaluation of passively transferred, nonneutralizing antibody-dependent cellular cytotoxicity-mediating IgG in protection of neonatal rhesus macaques against oral SIVmac251 challenge. J. Immunol. 177:4028–4036, 2006.

    Article  CAS  Google Scholar 

  12. Hanson, M. C., W. Abraham, M. P. Crespo, S. H. Chen, H. Liu, G. L. Szeto, M. Kim, E. L. Reinherz, and D. J. Irvine. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 33:861–868, 2015.

    Article  CAS  Google Scholar 

  13. Ho, J., R. A. Uger, M. B. Zwick, M. A. Luscher, B. H. Barber, and K. S. MacDonald. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine 23:1559–1573, 2005.

    Article  CAS  Google Scholar 

  14. Huang, W. C., B. Deng, C. Lin, K. A. Carter, J. Geng, A. Razi, X. He, U. Chitgupi, J. Federizon, B. Sun, C. A. Long, J. Ortega, S. Dutta, C. R. King, K. Miura, S. Lee, and J. F. Lovell. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat. Nanotechnol. 13:1174–1181, 2018.

    Article  CAS  Google Scholar 

  15. Kim, M., Z.-Y. J. Sun, K. D. Rand, X. Shi, L. Song, Y. Cheng, A. F. Fahmy, S. Majumdar, G. Ofek, Y. Yang, P. D. Kwong, J. Wang, J. R. Engen, G. Wagner, and E. L. Reinherz. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat. Struct. Mol. Biol. 18:1235–1243, 2011.

    Article  CAS  Google Scholar 

  16. Lovell, J. F., C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. Chan, W. Cao, L. V. Wang, and G. Zheng. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10:324, 2011.

    Article  CAS  Google Scholar 

  17. Mascola, J. R., G. Stiegler, T. C. VanCott, H. Katinger, C. B. Carpenter, C. E. Hanson, H. Beary, D. Hayes, S. S. Frankel, D. L. Birx, and M. G. Lewis. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6:207–210, 2000.

    Article  CAS  Google Scholar 

  18. Matyas, G. R., L. Wieczorek, Z. Beck, C. Ochsenbauer-Jambor, J. C. Kappes, N. L. Michael, V. R. Polonis, and C. R. Alving. Neutralizing antibodies induced by liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 4E10 epitope and lipid epitopes. AIDS 23:2069–2077, 2009.

    Article  CAS  Google Scholar 

  19. McCoy, L. E., and D. R. Burton. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 275:11–20, 2017.

    Article  CAS  Google Scholar 

  20. Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. HIV Protocols, Berlin: Springer, 2009, pp. 395–405.

    Chapter  Google Scholar 

  21. Montero, M., N. Gulzar, K.-A. Klaric, J. E. Donald, C. Lepik, S. Wu, S. Tsai, J.-P. Julien, A. J. Hessell, S. Wang, S. Lu, D. R. Burton, E. F. Pai, W. F. DeGrado, and J. K. Scott. Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. J. Virol. 86:2930–2941, 2012.

    Article  CAS  Google Scholar 

  22. Ofek, G., F. J. Guenaga, W. R. Schief, J. Skinner, D. Baker, R. Wyatt, and P. D. Kwong. Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl. Acad. Sci. USA 107:17880–17887, 2010.

    Article  CAS  Google Scholar 

  23. Sarkar, A., S. Bale, A. J. Behrens, S. Kumar, S. K. Sharma, N. de Val, J. Pallesen, A. Irimia, D. C. Diwanji, R. L. Stanfield, A. B. Ward, M. Crispin, R. T. Wyatt, and I. A. Wilson. Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nat. Commun. 9:1956, 2018.

    Article  Google Scholar 

  24. Shao, S., T. N. Do, A. Razi, U. Chitgupi, J. Geng, R. J. Alsop, B. G. Dzikovski, M. C. Rheinstädter, J. Ortega, M. Karttunen, J. A. Spernyak, and J. F. Lovell. Design of hydrated porphyrin-phospholipid bilayers with enhanced magnetic resonance contrast. Small 13:1602505, 2017.

    Article  Google Scholar 

  25. Shao, S., J. Geng, H. A. Yi, S. Gogia, S. Neelamegham, A. Jacobs, and J. F. Lovell. Functionalization of cobalt porphyrin–phospholipid bilayers with his-tagged ligands and antigens. Nat. Chem. 7:438, 2015.

    Article  CAS  Google Scholar 

  26. Shao, S., V. Rajendiran, and J. F. Lovell. Metalloporphyrin nanoparticles: coordinating diverse theranostic functions. Coord. Chem. Rev. 379:99–120, 2019.

    Article  CAS  Google Scholar 

  27. Steichen, J. M., D. W. Kulp, T. Tokatlian, A. Escolano, P. Dosenovic, R. L. Stanfield, L. E. McCoy, G. Ozorowski, X. Hu, O. Kalyuzhniy, B. Briney, T. Schiffner, F. Garces, N. T. Freund, A. D. Gitlin, S. Menis, E. Georgeson, M. Kubitz, Y. Adachi, M. Jones, A. A. Mutafyan, D. S. Yun, C. T. Mayer, A. B. Ward, D. R. Burton, I. A. Wilson, D. J. Irvine, M. C. Nussenzweig, and W. R. Schief. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45:483–496, 2016.

    Article  CAS  Google Scholar 

  28. Venditto, V. J., D. S. Watson, M. Motion, D. Montefiori, and F. C. Szoka. Rational design of membrane proximal external region lipopeptides containing chemical modifications for HIV-1 vaccination. Clin. Vaccine Immunol. 20:39–45, 2013.

    Article  CAS  Google Scholar 

  29. Venditto, V. J., L. Wieczorek, S. Molnar, F. Teque, G. Landucci, D. S. Watson, D. Forthal, V. R. Polonis, J. A. Levy, and F. C. Szoka. Chemically modified peptides based on the membrane-proximal external region of the HIV-1 envelope induce high-titer, epitope-specific nonneutralizing antibodies in rabbits. Clin. Vaccine Immunol. 21:1086–1093, 2014.

    Article  Google Scholar 

  30. Verkoczy, L., G. Kelsoe, and B. F. Haynes. HIV-1 envelope gp41 broadly neutralizing antibodies: hurdles for vaccine development. PLoS Pathog. 10:1371, 2014.

    Article  Google Scholar 

  31. Watson, D. S., and F. C. Szoka, Jr. Role of lipid structure in the humoral immune response in mice to covalent lipid–peptides from the membrane proximal region of HIV-1 gp41. Vaccine 27:4672–4683, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01AI125119, R21AI122964, DP5OD017898, HHSN272201800004C). We would like to thanks Earl Poptic at Cleveland Clinic for hybridoma work. We acknowledge PATH-MVI for providing Pfs25.

Conflict of interest

JF.L and W.H. hold interest in POP Biotechnologies. All other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Lovell.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Huang, WC., Lin, C. et al. An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice. Ann Biomed Eng 48, 1991–2001 (2020). https://doi.org/10.1007/s10439-019-02398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02398-8

Keywords

Navigation