Skip to main content
Log in

Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrogastrography (EGG) is a non-invasive method for measuring gastric electrical activity. Recent simulation studies have attempted to extend the current clinical utility of the EGG, in particular by providing a theoretical framework for distinguishing specific gastric slow wave dysrhythmias. In this paper we implement an experimental setup called a ‘torso-tank’ with the aim of expanding and experimentally validating these previous simulations. The torso-tank was developed using an adult male torso phantom with 190 electrodes embedded throughout the torso. The gastric slow waves were reproduced using an artificial current source capable of producing 3D electrical fields. Multiple gastric dysrhythmias were reproduced based on high-resolution mapping data from cases of human gastric dysfunction (gastric re-entry, conduction blocks and ectopic pacemakers) in addition to normal test data. Each case was recorded and compared to the previously-presented simulated results. Qualitative and quantitative analyses were performed to define the accuracy showing \(\sim \) 1.8% difference, \(\sim \) 0.99 correlation, and \(\sim \) 0.04 normalised RMS error between experimental and simulated findings. These results reaffirm previous findings and these methods in unison therefore present a promising morphological-based methodology for advancing the understanding and clinical applications of EGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abell, T. L., and J. R. Malagelada. Glucagon-evoked gastric dysrhythmias in humans shown by an improved electrogastrographic technique. Gastroenterology 88:1932–1940, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez, W. C. The electrogastrogram and what it shows. JAMA 78:1116, 1922.

    Article  Google Scholar 

  3. Angeli, T. R., L. K. Cheng, P. Du, T. Hsu, H. Wang, C. E. Bernard, M.-G. G. Vannucchi, M. S. Faussone-Pellegrini, C. Lahr, R. Vather, J. A. Windsor, G. Farrugia, T. L. Abell, G. O’Grady, and T. H. H. Wang. Loss of interstitial cells of cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology 149:56–66, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Austin, T. M., L. Li, A. J. Pullan, and L. K. Cheng. Effects of gastrointestinal tissue structure on computed dipole vectors. Biomed. Eng. 6:39, 2007.

    Google Scholar 

  5. Bortolotti, M. Electrogastrography: a seductive promise, only partially kept. Am. J. Gastroenterol. 93:1791–1794, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Bradshaw, L. A., L. K. Cheng, E. Chung, C. B. Obioha, J. C. Erickson, B. L. Gorman, S. Somarajan, and W. O. Richards. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave. Neurogastroenterol. Motil. 28:837–848, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Calder, S., G. O’Grady, L. K. Cheng, and P. Du. A theoretical analysis of electrogastrography (EGG) signatures associated with gastric dysrhythmias. IEEE Trans. Biomed. Eng. 64:1592–1601, 2017.

    Article  PubMed  Google Scholar 

  8. Chang, F. Y. Electrogastrography: Basic knowledge, recording, processing and its clinical applications. J. Gastroenterol. Hepatol. (Australia) 20:502–516, 2005.

    Article  Google Scholar 

  9. Chen, J. D., B. D. Schirmer, and R. W. McCallum. Serosal and cutaneous recordings of gastric myoelectrical activity in patients with gastroparesis. The Am. J. Physiol. 266:G90–G98, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Coleski, R. and W. L. Hasler. Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans. Neurogastroenterol. Motil. 16:557–65, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. Cuffin, B. N. and D. B. Geselowitz. Studies of the electrocardiogram using realistic cardiac and torso models. IEEE Trans. Biomed. Eng. 24:242–252, 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Du, P., A. Hameed, T. R. Angeli, C. Lahr, T. L. Abell, L. K. Cheng, and G. O’Grady. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol. Motil. 27:1409–1422, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Du, P., G. O’Grady, L. K. Cheng, and A. J. Pullan. A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys. J. 99:2784–2792, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Du, P., N. Paskaranandavadivel, G. O’Grady, S. J. Tang, and L. K. Cheng. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry. Math. Med. Biol. 32:405–423, 2015.

    PubMed  Google Scholar 

  15. Du, P., J. Gao, G. O’Grady, and L. K. Cheng. A simplified biophysical cell model for gastric slow wave entrainment simulation. In: Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2013:6547–6550, 2013.

  16. Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20 Suppl 1:54–63, 2008.

    Article  PubMed  Google Scholar 

  17. Gharibans, A. A., S. Kim, D. C. Kunkel, and T. P. Coleman. High-resolution electrogastrogram: a novel, noninvasive method for determining gastric slow-wave direction and speed. IEEE Trans. Biomed. Eng. 64:807–815, 2017.

    Article  PubMed  Google Scholar 

  18. Green, L. S., B. Taccardi, P. R. Ershler, and R. L. Lux. Epicardial potential mapping. Effects of conducting media on isopotential and isochrone distributions. Circulation 84:2513–21, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton, J. W., B. E. Bellahsene, M. Reichelderfer, J. G. Webster, and P. Bass. Human electrogastrograms---comparison of surface and mucosal recordings. Digest. Dis. Sci. 31:33–39, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Huh, C. H., M. S. Bhutani, E. B. Farfán, and W. E. Bolch. Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound. Physiol. Meas. 24:N15–N22, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Huizinga, J. D., J.-H. Chen, H. B. Mikkelsen, X.-Y. Wang, S. P. Parsons, and Y. F. Zhu. Interstitial cells of Cajal, from structure to function. Front. Neurosci. 7:43, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huizinga, J. D. and W. J. E. P. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol.-Gastrointest. Liver Physiol. 296:G1–G8, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Liehr, M. and J. Haueisen. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom. Phys. Med. Biol. 53:245–54, 2008.

    Article  PubMed  Google Scholar 

  24. Lines, G. T., M. L. Buist, P. Grø ttum, A. J. Pullan, J. Sundnes, and A. Tveito. Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Vis. Sci. 5:215–239, 2003.

    Article  Google Scholar 

  25. MacLeod, R. S., Q. Ni, B. Punske, P. R. Ershler, B. Yilmaz, and B. Taccardi. Effects of heart position on the body-surface electrocardiogram. J. Electrocardiol. 33:229–237, 2000.

    Article  PubMed  Google Scholar 

  26. MacLeod, R. Physical and animal validation models, 2014. http://www.sci.utah.edu/~macleod/papers/valid99/node4.html, accessed 2017-09-14.

  27. MacLeod, R., B. Taccardi, and R. Lux. Electrocardiographic mapping in a realistic torso tank preparation. In: Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society 1:245–246, 1995.

  28. Mårvik, R., A. K. Sandvik, H. L. Waldum, R. Marvik, and R. Mdrvik. Gastrin stimulates histamine release from the isolated pig stomach gastrin stimulates histamine release from the isolated pig stomach. Scand. J. Gastroenterol. 32:2–5, 1997.

    Article  PubMed  Google Scholar 

  29. Nagata, Y. The electrocardiographic leads for telemetering as evaluated from view point of the transfer impedance vector. Jpn. Heart J. 11:183–194, 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Nagata, Y. The influence of the inhomogeneities of electrical conductivity within the torso on the electrocardiogram as evaluated from the view point of the transfer impedence vector. Jpn. Heart J. 11:489–505, 1970.

    Article  PubMed  CAS  Google Scholar 

  31. O’Grady, G., P. Du, L. K. Cheng, J. U. Egbuji, W. J. E. P. Lammers, J. A. Windsor, and A. J. Pullan. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am. J. Physiol.-Gastrointest. Liver Physiol. 299:G585–G592, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. O’Grady, G., P. Du, W. J. E. P. Lammers, J. U. Egbuji, P. Mithraratne, J. D. Z. Chen, L. K. Cheng, J. A. Windsor, and A. J. Pullan. High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am. J. Physiol.-Gastrointest. Liver Physiol. 298:G314–G321, 2010.

    Google Scholar 

  33. O’Grady, G., P. Du, N. Paskaranandavadivel, T. R. Angeli, W. J. E. P. Lammers, S. J. Asirvatham, J. A. Windsor, G. Farrugia, A. J. Pullan, and L. K. Cheng. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol. Motil. 24:e299–e312, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Grady, G., T. R. Angeli, P. Du, C. Lahr, W. J. E. P. Lammers, J. A. Windsor, T. L. Abell, G. Farrugia, A. J. Pullan, and L. K. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143:589–598, 2012.

    Article  Google Scholar 

  35. Parkman, H. P., W. L. Hasler, J. L. Barnett, and E. Y. Eaker. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol. Motil. 15:89–102, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Pullan, A. J., M. L. Buist, and L. K. Cheng. Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. Singapore: World Scientific Publishing Company 2005, 1–41.

    Book  Google Scholar 

  37. Qian, L. W., P. J. Pasricha, and J. D. Z. Chen. Origins and patterns of spontaneous and drug-induced canine gastric myoelectrical dysrhythmia. Digest. Dis. Sci. 48:508–515, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Simonian, H. P., K. Panganamamula, J. Z. Chen, R. S. Fisher, and H. P. Parkman. Multichannel electrogastrography (EGG) in symptomatic patients: a single center study. Am. J. Gastroenterol. 99:478–85, 2004.

    Article  PubMed  Google Scholar 

  39. Taghian, T., D. A. Narmoneva, and A. B. Kogan. Modulation of cell function by electric field: a high-resolution analysis. J. R. Soc. Interface 12:20150153, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tate, J., T. Pilcher, K. Aras, B. Burton, and R. MacLeod. Verification of a defibrillation simulation using internal electric fields in a human shaped phantom. Comput. Cardiol. 2014:689–692, 2014.

    Google Scholar 

  41. Verhagen, M. A. M. T., L. J. Van Schelven, M. Samsom, and A. J. P. M. Smout. Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology 117:453–460, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Wetterling, F., M. Liehr, P. Schimpf, H. Liu, and J. Haueisen. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom. Phys. Med. Biol. 54:5395–5409, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Medical Technologies Centre of Research Excellence (MedTech CoRE) New Zealand, and the Health Research Council of New Zealand. SC was supported by the Andrew Pullan Doctoral Scholarship. LC by a Fraunhofer-Bessel Research Award from the Alexander von Humboldt Foundation and the Fraunhofer IPA. PD was supported by a Rutherford Discovery Fellowship administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Calder.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calder, S., O’Grady, G., Cheng, L.K. et al. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results. Ann Biomed Eng 46, 1183–1193 (2018). https://doi.org/10.1007/s10439-018-2030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2030-x

Keywords

Navigation