Skip to main content

Advertisement

Log in

Emerging Innovative Wound Dressings

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The skin provides a protective barrier to the body against the environment. Ineffective healing of damaged skin can cause a chronic wound which would increase the risk of infection and associated complications. The use of wound dressings to protect the wound and provide an optimal environment for wound repair is a common practice in the burn clinic. While traditional wound healing dressings have substantially changed the wound outcome, wound healing complications are still a challenge to healthcare. Advancements in tissue engineering, biomaterial sciences, and stem cell biology led to the development of novel dressings that not only dress the wounds but also actively contribute to the process of healing. This review discusses the various properties of the emerging wound dressings that are designed in attempts to improve wound care upon skin injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Reprinted from Ref. 57, Copyright (2017), with permission from Elsevier.

Figure 5

Reprinted from Ref. 51, Copyright (2017), with permission from Elsevier.

Figure 6

Reprinted from Ref. 73, Copyright (2016), with permission from John Wiley and Sons.

Figure 7

Reprinted with permission from Ref. 128. Copyright (2015) American Chemical Society.

Figure 8

Ref. 59, by permission of Oxford University Press.

Figure 9

Reprinted from Ref. 87, Copyright (2017), with permission from John Wiley and Sons.

Similar content being viewed by others

References

  1. Abboud, E. C., J. C. Settle, T. B. Legare, J. E. Marcet, D. J. Barillo, and J. E. Sanchez. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns 40:S30–S39, 2014.

    Article  PubMed  Google Scholar 

  2. Agren, M. S. Zinc in wound repair. Arch. Dermatol. 135:1273–1274, 1999.

    Article  CAS  PubMed  Google Scholar 

  3. Ahn, S., C. O. Chantre, A. R. Gannon, J. U. Lind, P. H. Campbell, T. Grevesse, B. B. O’Connor, and K. K. Parker. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv. Healthc. Mater. 7:1701175, 2018.

    Article  CAS  Google Scholar 

  4. Ashcroft, G. S., T. Greenwell-Wild, M. A. Horan, S. M. Wahl, and M. W. Ferguson. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155:1137–1146, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashcroft, G. S., S. J. Mills, K. Lei, L. Gibbons, M.-J. Jeong, M. Taniguchi, M. Burow, M. A. Horan, S. M. Wahl, and T. Nakayama. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Investig. 111:1309–1318, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Atiyeh, B. S., J. Ioannovich, C. A. Al-Amm, and K. A. El-Musa. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr. Pharm. Biotechnol. 3:179–195, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Augustine, R., A. Augustine, N. Kalarikkal, and S. Thomas. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Progr Biomater 5:223–235, 2016.

    Article  CAS  Google Scholar 

  8. Avijgan, M. Phytotherapy: an alternative treatment for non-healing ulcers. J. Wound Care 13:157–158, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Barki, K. G., A. Das, S. Dixith, P. D. Ghatak, S. Mathew-Steiner, E. Schwab, S. Khanna, D. J. Wozniak, S. Roy, and C. K. Sen. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Ann. Surg. 2017. https://doi.org/10.1097/SLA.0000000000002504.

    Article  Google Scholar 

  10. Ben-Shalom, N., Z. Nevo, A. Patchornik, and D. Robinson. Novel injectable chitosan mixtures forming hydrogels. Google Patents, 2012.

  11. Bishop, S., M. Walker, A. Rogers, and W. Chen. Importance of moisture balance at the wound-dressing interface. J. Wound Care 12:125–128, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Boateng, J. S., K. H. Matthews, H. N. Stevens, and G. M. Eccleston. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97:2892–2923, 2008.

    Article  CAS  Google Scholar 

  13. Cen, L., W. Liu, L. Cui, W. Zhang, and Y. Cao. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res. 63:492, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Chantre, C. O., P. H. Campbell, H. M. Golecki, A. T. Buganza, A. K. Capulli, L. F. Deravi, S. Dauth, S. P. Sheehy, J. A. Paten, and K. Gledhill. Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials 166:96–108, 2018.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H., G. Lan, L. Ran, Y. Xiao, K. Yu, B. Lu, F. Dai, D. Wu, and F. Lu. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 183:70–80, 2018.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, J. Z., A. Farrokhi, A. Ghahary, and R. B. Jalili. Therapeutic use of stem cells in treatment of burn injuries. J. Burn Care Res. 39:175–182, 2018.

    PubMed  Google Scholar 

  17. Choi, S. M., K. M. Lee, H. J. Kim, I. K. Park, H. J. Kang, H. C. Shin, D. Baek, Y. Choi, K. H. Park, and J. W. Lee. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 66:325–334, 2018.

    Article  CAS  PubMed  Google Scholar 

  18. Choi, S. M., H. A. Ryu, K.-M. Lee, H. J. Kim, I. K. Park, W. J. Cho, H.-C. Shin, W. J. Choi, and J. W. Lee. Development of stabilized growth factor-loaded hyaluronate-collagen dressing (HCD) matrix for impaired wound healing. Biomater. Res. 20:9, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cole, W. Human acellular dermal matrix paired with silver-zinc coupled electroceutical dressing results in rapid healing of complicated diabetic wounds of mixed etiology: a novel case series. Wounds 28:241–247, 2016.

    PubMed  Google Scholar 

  20. Dai, T., M. Tanaka, Y. Y. Huang, and M. R. Hamblin. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 9:857–879, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darby, I. A., B. Laverdet, F. Bonté, and A. Desmoulière. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7:301, 2014.

    PubMed  PubMed Central  Google Scholar 

  22. Dash, M., F. Chiellini, R. M. Ottenbrite, and E. Chiellini. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36:981–1014, 2011.

    Article  CAS  Google Scholar 

  23. Daunton, C., S. Kothari, L. Smith, and D. Steele. A history of materials and practices for wound management. Wound Pract. Res. 20:174, 2012.

    Google Scholar 

  24. d’Ayala, G. G., M. Malinconico, and P. Laurienzo. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. Dhivya, S., V. V. Padma, and E. Santhini. Wound dressings: a review. Biomedicine 5:22, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Doillon, C. J., and F. H. Silver. Collagen-based wound dressing: effects of hyaluronic acid and firponectin on wound healing. Biomaterials 7:3–8, 1986.

    Article  CAS  PubMed  Google Scholar 

  27. Dong, Y., M. Rodrigues, X. Li, S. H. Kwon, N. Kosaric, S. Khong, Y. Gao, W. Wang, and G. C. Gurtner. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Func. Mater. 27:1606619, 2017.

    Article  CAS  Google Scholar 

  28. Dumville, J. C., S. Deshpande, S. O’Meara, and K. Speak. Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev., 2012.

  29. Dumville, J. C., M. O. Soares, S. O’Meara, and N. Cullum. Systematic review and mixed treatment comparison: dressings to heal diabetic foot ulcers. Diabetologia 55:1902–1910, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edmonds, M., J. L. Lázaro-Martínez, J. M. Alfayate-García, J. Martini, J.-M. Petit, G. Rayman, R. Lobmann, L. Uccioli, A. Sauvadet, and S. Bohbot. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): an international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol. 6:186–196, 2018.

    Article  CAS  PubMed  Google Scholar 

  31. Eming, S. A., T. Krieg, and J. M. Davidson. Inflammation in wound repair: molecular and cellular mechanisms. J. Investig. Dermatol. 127:514–525, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Enoch, S., and D. J. Leaper. Basic science of wound healing. Surg. Oxf. Int. Ed. 26:31–37, 2008.

    Google Scholar 

  33. Erdag, G., and R. L. Sheridan. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 30:322–328, 2004.

    Article  PubMed  Google Scholar 

  34. Faucher, N., H. Safar, M. Baret, A. Philippe, and R. Farid. Superabsorbent dressings for copiously exuding wounds. Br. J. Nurs. 21:S22–S28, 2012.

    Article  PubMed  Google Scholar 

  35. Field, C. K., and M. D. Kerstein. Overview of wound healing in a moist environment. Am. J. Surg. 167:S2–S6, 1994.

    Article  Google Scholar 

  36. Fischer, L. J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, J. Lombardi, I. Shapiro, and P. J. DiMuzio. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J. Surg. Res. 152:157–166, 2009.

    Article  CAS  PubMed  Google Scholar 

  37. Fleck, C. A., and R. Simman. Modern collagen wound dressings: function and Purpose. J. Am. Col. Certif. Wound Spec. 2:50–54, 2010.

    PubMed  Google Scholar 

  38. Fonder, M. A., G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli, and A. J. Mamelak. Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 58:185–206, 2008.

    Article  PubMed  Google Scholar 

  39. Gantwerker, E. A., and D. B. Hom. Skin: histology and physiology of wound healing. Clin. Plast. Surg. 39:85–97, 2012.

    Article  PubMed  Google Scholar 

  40. Greenhalgh, D. G. The role of growth factors in wound healing. J. Trauma 41:159–167, 1996.

    Article  CAS  PubMed  Google Scholar 

  41. Grice, E. A., H. H. Kong, S. Conlan, C. B. Deming, J. Davis, A. C. Young, G. G. Bouffard, R. W. Blakesley, P. R. Murray, and E. D. Green. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guarderas, F., Y. Leavell, T. Sengupta, M. Zhukova, and T. L. Megraw. Assessment of chicken-egg membrane as a dressing for wound healing. Adv. Skin Wound Care 29:131–134, 2016.

    Article  PubMed  Google Scholar 

  43. Hilton, J., D. Williams, B. Beuker, D. Miller, and K. Harding. Wound dressings in diabetic foot disease. Clin. Infect. Dis. 39:S100–S103, 2004.

    Article  PubMed  Google Scholar 

  44. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.

    Article  Google Scholar 

  45. Hollinworth, H., and M. Collier. Nurses’ views about pain and trauma at dressing changes: results of a national survey. J. Wound Care 9:369–373, 2000.

    Article  CAS  PubMed  Google Scholar 

  46. Holm-Pedersen, P., and B. Zederfeldt. Granulation tissue formation in subcutaneously implanted cellulose sponges in young and old rats. Scand. J. Plast. Reconstr. Surg. 5:13–16, 1971.

    Article  CAS  PubMed  Google Scholar 

  47. Hopewell, J. The skin: its structure and response to ionizing radiation. Int. J. Radiat. Biol. 57:751–773, 1990.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu, B. B., S. R. Hagerman, K. Jamieson, S. A. Castleberry, W. Wang, E. Holler, J. Y. Ljubimova, and P. T. Hammond. Multifunctional self-assembled films for rapid hemostat and sustained anti-infective delivery. ACS Biomater. Sci. Eng. 1:148–156, 2015.

    Article  CAS  Google Scholar 

  49. Huang, T., H. Xu, K. Jiao, L. Zhu, H. R. Brown, and H. Wang. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19:1622–1626, 2007.

    Article  CAS  Google Scholar 

  50. Hunt, T. K., H. Hopf, and Z. Hussain. Physiology of wound healing. Adv Skin Wound Care 13:6, 2000.

    CAS  PubMed  Google Scholar 

  51. Jankowska, D. A., M. B. Bannwarth, C. Schulenburg, G. Faccio, K. Maniura-Weber, R. M. Rossi, L. Scherer, M. Richter, and L. F. Boesel. Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens. Bioelectron. 87:312–319, 2017.

    Article  CAS  PubMed  Google Scholar 

  52. Jayakumar, R., M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29:322–337, 2011.

    Article  CAS  PubMed  Google Scholar 

  53. Jeffcoate, W. J., P. Price, and K. G. Harding. Wound healing and treatments for people with diabetic foot ulcers. Diabetes 20:S78–S89, 2004.

    Google Scholar 

  54. Jones, V., J. E. Grey, and K. G. Harding. Wound dressings. BMJ 332:777–780, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jung, R., Y. Kim, H.-S. Kim, and H.-J. Jin. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J. Biomater. Sci. Polym. Ed. 20:311–324, 2009.

    Article  CAS  PubMed  Google Scholar 

  56. Kamoun, E. A., E. R. S. Kenawy, and X. Chen. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8:217–233, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kassal, P., M. Zubak, G. Scheipl, G. J. Mohr, M. D. Steinberg, and I. M. Steinberg. Smart bandage with wireless connectivity for optical monitoring of pH. Sens. Actuators B 246:455–460, 2017.

    Article  CAS  Google Scholar 

  58. Khamrai, M., S. L. Banerjee, and P. P. Kundu. Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym. 174:580–590, 2017.

    Article  CAS  PubMed  Google Scholar 

  59. Kim, H., S. Park, G. Housler, V. Marcel, S. Cross, and M. Izadjoo. An overview of the efficacy of a next generation electroceutical wound care device. Mil. Med. 181:184–190, 2016.

    Article  PubMed  Google Scholar 

  60. Kim, I.-Y., S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26:1–21, 2008.

    Article  CAS  PubMed  Google Scholar 

  61. Kolarsick, P. A. J., M. A. Kolarsick, and C. Goodwin. Anatomy and physiology of the skin. J. Dermatol. Nurs. Assoc. 3:203–213, 2011.

    Article  Google Scholar 

  62. Kragh, J. F., J. K. Aden, J. Steinbaugh, M. Bullard, and M. A. Dubick. Gauze vs XSTAT in wound packing for hemorrhage control. Am. J. Emerg. Med. 33:974–976, 2015.

    Article  PubMed  Google Scholar 

  63. Krejner, A., and T. Grzela. Modulation of matrix metalloproteinases MMP-2 and MMP-9 activity by hydrofiber-foam hybrid dressing-relevant support in the treatment of chronic wounds. Central-Eur. J. Immunol. 40:391, 2015.

    Article  CAS  Google Scholar 

  64. Krieger, B. R., D. M. Davis, J. E. Sanchez, J. J. Mateka, V. N. Nfonsam, J. C. Frattini, and J. E. Marcet. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis. Colon Rectum 54:1014–1019, 2011.

    Article  PubMed  Google Scholar 

  65. Ksander, G., and Y. Ogawa. Collagen wound healing matrices and process for their production. Google Patents, 1990.

  66. Lammers, G., G. S. Tjabringa, J. Schalkwijk, W. F. Daamen, and T. H. van Kuppevelt. A molecularly defined array based on native fibrillar collagen for the assessment of skin tissue engineering biomaterials. Biomaterials 30:6213–6220, 2009.

    Article  CAS  PubMed  Google Scholar 

  67. Lansdown, A. B. G. Bioactive Dressings: Old Ideas, New Technology. London: MA Healthcare, 2007.

    Google Scholar 

  68. Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101:1869–1879, 2001.

    Article  CAS  PubMed  Google Scholar 

  69. Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leung, C. Y. P. Microstructure-based systems, apparatus, and methods for wound closure. US Patent App, 2017.

  71. Li, J., J. Chen, and R. Kirsner. Pathophysiology of acute wound healing. Clin. Dermatol. 25:9–18, 2007.

    Article  CAS  PubMed  Google Scholar 

  72. Liechty, K. W., H. B. Kim, N. S. Adzick, and T. M. Crombleholme. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J. Pediatr. Surg. 35:866–872, 2000.

    Article  CAS  PubMed  Google Scholar 

  73. Lin, S., H. Yuk, T. Zhang, G. A. Parada, H. Koo, C. Yu, and X. Zhao. Stretchable hydrogel electronics and devices. Adv. Mater. 28:4497–4505, 2016.

    Article  CAS  PubMed  Google Scholar 

  74. Lorenz, H., and N. Adzick. Scarless skin wound repair in the fetus. West. J. Med. 159:350, 1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Majno, G. The healing hand: man and wound in the ancient world. Plast. Reconstr. Surg. 57:230, 1976.

    Article  Google Scholar 

  76. Malafaya, P. B., G. A. Silva, and R. L. Reis. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59:207–233, 2007.

    Article  CAS  PubMed  Google Scholar 

  77. Malmsjö, M., L. Gustafsson, S. Lindstedt Ingemansson, and R. Ingemansson. Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance p and calcitonin gene-related peptide in the wound edge. Ostomy-Wound Manag. 57:30–35, 2011.

    Google Scholar 

  78. Mano, J. F., G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, and R. L. Reis. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4:999–1030, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martin, P. Wound healing: aiming for perfect skin regeneration. Science 276:75–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  80. Matsumura, H., R. Imai, N. Ahmatjan, Y. Ida, M. Gondo, D. Shibata, and K. Wanatabe. Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings. Int Wound J 11:50–54, 2014.

    Article  PubMed  Google Scholar 

  81. Metcalf, D., D. Parsons, and P. Bowler. A next-generation antimicrobial wound dressing: a real-life clinical evaluation in the UK and Ireland. J. Wound Care 25:132–138, 2016.

    Article  CAS  PubMed  Google Scholar 

  82. Metcalf, D. G., D. Parsons, and P. G. Bowler. Clinical safety and effectiveness evaluation of a new antimicrobial wound dressing designed to manage exudate, infection and biofilm. Int. Wound J. 14:203–213, 2017.

    Article  PubMed  Google Scholar 

  83. Mi, F.-L., S.-S. Shyu, Y.-B. Wu, S.-T. Lee, J.-Y. Shyong, and R.-N. Huang. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173, 2001.

    Article  CAS  PubMed  Google Scholar 

  84. Mi, F.-L., Y.-C. Tan, H.-F. Liang, and H.-W. Sung. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191, 2002.

    Article  CAS  PubMed  Google Scholar 

  85. Mills, S. J., J. J. Ashworth, S. C. Gilliver, M. J. Hardman, and G. S. Ashcroft. The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J. Investig. Dermatol. 125:1053–1062, 2005.

    Article  CAS  PubMed  Google Scholar 

  86. Morimoto, N., S. Suzuki, Y. Saso, K. Tomihata, T. Taira, Y. Takahashi, and N. Morikawa. Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. Wound Repair Regen. 13:A14, 2005.

    Article  Google Scholar 

  87. Mostafalu, P., G. Kiaee, G. Giatsidis, A. Khalilpour, M. Nabavinia, M. R. Dokmeci, S. Sonkusale, D. P. Orgill, A. Tamayol, and A. Khademhosseini. A textile dressing for temporal and dosage controlled drug delivery. Adv. Funct. Mater. 27:1702399, 2017.

    Article  CAS  Google Scholar 

  88. Moura, L. I., A. M. Dias, E. Carvalho, and H. C. de Sousa. Recent advances on the development of wound dressings for diabetic foot ulcer treatment: a review. Acta Biomater. 9:7093–7114, 2013.

    Article  CAS  PubMed  Google Scholar 

  89. Mozalewska, W., R. Czechowska-Biskup, A. K. Olejnik, R. A. Wach, P. Ulański, and J. M. Rosiak. Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiat. Phys. Chem. 134:1–7, 2017.

    Article  CAS  Google Scholar 

  90. Münter, K.-C., S. De Lange, T. Eberlein, A. Andriessen, and M. Abel. Handling properties of a superabsorbent dressing in the management of patients with moderate-to-very high exuding wounds. J. Wound Care 27:246–253, 2018.

    Article  PubMed  Google Scholar 

  91. Nwomeh, B. C., D. R. Yager, and I. Cohen. Physiology of the chronic wound. Clin. Plast. Surg. 25:341–356, 1998.

    CAS  PubMed  Google Scholar 

  92. Pandit, A. S., and D. S. Faldman. Effect of oxygen treatment and dressing oxygen permeability on wound healing. Wound Repair Regen. 2:130–137, 1994.

    Article  CAS  PubMed  Google Scholar 

  93. Parenteau-Bareil, R., R. Gauvin, and F. Berthod. Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887, 2010.

    Article  CAS  PubMed Central  Google Scholar 

  94. Percival, S. L., S. McCarty, J. A. Hunt, and E. J. Woods. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22:174–186, 2014.

    Article  PubMed  Google Scholar 

  95. Radhakumary, C., M. Antonty, and K. Sreenivasan. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr. Polym. 83:705–713, 2011.

    Article  CAS  Google Scholar 

  96. Richard, J., J. Martini, M. B. Faraill, J. M’Bemba, M. Lepeut, F. Truchetet, S. Ehrler, S. Schuldiner, A. Sauvadet, and S. Bohbot. Management of diabetic foot ulcers with a TLC-NOSF wound dressing. J. Wound Care 21:142–147, 2012.

    Article  CAS  PubMed  Google Scholar 

  97. Richmond, N. A., A. D. Maderal, and A. C. Vivas. Evidence-based management of common chronic lower extremity ulcers. Dermatol. Ther. 26:187–196, 2013.

    Article  PubMed  Google Scholar 

  98. Rodero, M. P., and K. Khosrotehrani. Skin wound healing modulation by macrophages. Int. J. Clin. Exp. Pathol. 3:643, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rogozinski, W. J. Modifiable, semi-permeable, wound dressing. Google Patents., 1993.

  100. Rowlatt, U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A 381:353–361, 1979.

    Article  CAS  Google Scholar 

  101. Sánchez-Sánchez, R., A. Brena-Molina, V. Martínez-López, Y. Melgarejo-Ramírez, L. Tamay de Dios, R. Gómez-García, M. L. Reyes-Frías, L. Rodríguez-Rodríguez, D. Garciadiego-Cázares, H. Lugo-Martínez, C. Ibarra, M. E. Martínez-Pardo, and C. Velasquillo-Martínez. Generation of two biological wound dressings as a potential delivery system of human adipose-derived mesenchymal stem cells. ASAIO J 61:718–725, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sannino, A., C. Demitri, and M. Madaghiele. Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373, 2009.

    Article  CAS  PubMed Central  Google Scholar 

  103. Sato, Y., T. Ohshima, and T. Kondo. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem. Biophys. Res. Commun. 265:194–199, 1999.

    Article  CAS  PubMed  Google Scholar 

  104. Schmid-Wendtner, M.-H., and H. C. Korting. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19:296–302, 2006.

    Article  PubMed  Google Scholar 

  105. Schneider, L. A., A. Korber, S. Grabbe, and J. Dissemond. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298:413–420, 2007.

    Article  PubMed  Google Scholar 

  106. Seaman, S. Dressing selection in chronic wound management. J. Am. Podiatr. Med. Assoc. 92:24–33, 2002.

    Article  PubMed  Google Scholar 

  107. Segre, J. A., C. Bauer, and E. Fuchs. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22:356, 1999.

    Article  CAS  PubMed  Google Scholar 

  108. Sell, S. A., P. S. Wolfe, K. Garg, J. M. McCool, I. A. Rodriguez, and G. L. Bowlin. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2:522–553, 2010.

    Article  CAS  Google Scholar 

  109. Shah, J. B. The history of wound care. J. Am. Col. Certif. Wound Spec. 3:65–66, 2011.

    PubMed  Google Scholar 

  110. Shetty, S., and S. Gokul. Keratinization and its disorders. Oman Med. J. 27:348–357, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shirazaki, P., J. Varshosaz, and A. Z. Kharazi. Electrospun gelatin/poly(glycerol sebacate) membrane with controlled release of antibiotics for wound dressing. Adv. Biomed. Res. 6:105, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Siddiqui, A. R., and J. M. Bernstein. Chronic wound infection: facts and controversies. Clin. Dermatol. 28:519–526, 2010.

    Article  PubMed  Google Scholar 

  113. Silver, F., V. Sharma, D. R. Berndt, and L. E. Marn. Collagen-based wound dressing and method for applying same. Google Patents., 1993.

  114. Sims, S. K., S. Bowling, S. P. Dituro, B. S. Kheirabadi, and F. Butler. Management of external hemorrhage in tactical combat casualty care: the adjunctive use of XStat TM compressed hemostatic sponges. J. Spec. Oper. Med. 16:19–28, 2016.

    PubMed  Google Scholar 

  115. Singla, R., S. Soni, P. M. Kulurkar, A. Kumari, M. S. V. Patial, Y. S. Padwad, and S. K. Yadav. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 155:152–162, 2017.

    Article  CAS  PubMed  Google Scholar 

  116. Singla, R., S. Soni, V. Patial, P. M. Kulurkar, A. Kumari, Y. S. Padwad, and S. K. Yadav. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int. J. Biol. Macromol. 105:45–55, 2017.

    Article  CAS  PubMed  Google Scholar 

  117. Sipos, P., H. Gyory, K. Hagymási, P. Ondrejka, and A. Blázovics. Special wound healing methods used in ancient Egypt and the mythological background. World J. Surg. 28:211, 2004.

    Article  PubMed  Google Scholar 

  118. Skórkowska-Telichowska, K., M. Czemplik, A. Kulma, and J. Szopa. The local treatment and available dressings designed for chronic wounds. J. Am. Acad. Dermatol. 68:e117–e126, 2013.

    Article  CAS  PubMed  Google Scholar 

  119. Solway, D. R., W. A. Clark, and D. J. Levinson. A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int. Wound J. 8:69–73, 2011.

    Article  PubMed  Google Scholar 

  120. Sood, A., M. S. Granick, and N. L. Tomaselli. Wound dressings and comparative effectiveness data. Adv. Wound Care (New Rochelle) 3:511–529, 2014.

    Article  Google Scholar 

  121. Soppirnath, K. S., and T. M. Aminabhavi. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm. 53:87–98, 2002.

    Article  CAS  Google Scholar 

  122. Sprenger, A., S. Weber, M. Zarai, R. Engelke, J. M. Nascimento, C. Gretzmeier, M. Hilpert, M. Boerries, C. Has, H. Busch, L. Bruckner-Tuderman, and J. Dengjel. Consistency of the proteome in primary human keratinocytes with respect to gender, age, and skin localization. Mol. Cell. Proteom. 12:2509–2521, 2013.

    Article  CAS  Google Scholar 

  123. Stang, D. The use of Aquacel Ag in the management of diabetic foot ulcers. The Diabetic Foot, 2004.

  124. Starr, A. H. Plaster or bandage for skin application. Google Patents., 1951.

  125. Stashak, T. S., E. Farstvedt, and A. Othic. Update on wound dressings: indications and best use. Clin. Tech. Equine Pract. 3:148–163, 2004.

    Article  Google Scholar 

  126. Steed, D. L. The role of growth factors in wound healing. Surg. Clin. N. Am. 77:575–586, 1997.

    Article  CAS  PubMed  Google Scholar 

  127. Swisher, S. L., M. C. Lin, A. Liao, E. J. Leeflang, Y. Khan, F. J. Pavinatto, K. Mann, A. Naujokas, D. Young, S. Roy, M. R. Harrison, A. C. Arias, V. Subramanian, and M. M. Maharbiz. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 6:6575, 2015.

    Article  CAS  PubMed  Google Scholar 

  128. Thet, N. T., D. R. Alves, J. E. Bean, S. Booth, J. Nzakizwanayo, A. E. Young, B. V. Jones, and A. T. Jenkins. Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl. Mater. Interfaces 8:14909–14919, 2016.

    Article  CAS  PubMed  Google Scholar 

  129. Tisosky, A. J., O. Iyoha-Bello, N. Demosthenes, G. Quimbayo, T. Coreanu, and A. Abdeen. Use of a silver nylon dressing following total hip and knee arthroplasty decreases the postoperative infection rate. JAAOS Global Res. Rev. 1:e034, 2017.

    Article  Google Scholar 

  130. Tonnesen, M. G., X. Feng, and R. A. Clark. Angiogenesis in wound healing. J. Investig. Dermatol. Symposium Proceedings 1:40–46, 2000.

  131. van Rijswijk, L., and J. Beitz. The traditions and terminology of wound dressings: food for thought. J. Wound Ostomy Cont. Nurs. 25:116–122, 1998.

    Google Scholar 

  132. Velander, P., C. Theopold, T. Hirsch, O. Bleiziffer, B. Zuhaili, M. Fossum, D. Hoeller, R. Gheerardyn, M. Chen, S. Visovatti, H. Svensson, F. Yao, and E. Eriksson. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen. 16:288–293, 2008.

    Article  PubMed  Google Scholar 

  133. Velnar, T., T. Bailey, and V. Smrkolj. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37:1528–1542, 2009.

    Article  CAS  PubMed  Google Scholar 

  134. Vowden, K. Complex wound or complex patient? Strategies for treatment. Br. J. Commun. Nurs. Suppl: S6, S8, S10 passim, 2005.

  135. Wang, W., S. Lin, Y. Xiao, Y. Huang, Y. Tan, L. Cai, and X. Li. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci. 82:190–204, 2008.

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y., and P. K. Maitz. Advances and new technologies in the treatment of burn injury. Adv. Drug Deliv. Rev. 123:1–2, 2018.

    Article  CAS  PubMed  Google Scholar 

  137. Wang, S., H. Yang, Z. Tang, G. Long, and W. Huang. Wound dressing model of human umbilical cord mesenchymal stem cells-alginates complex promotes skin wound healing by paracrine signaling. Stem Cells Int., 2016. https://doi.org/10.1155/2016/3269267.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Weller, C., and G. Sussman. Wound dressings update. J. Pharm. Pract. Res. 36:318–324, 2006.

    Article  Google Scholar 

  139. Welshhans, J. L., and D. B. Hom. Soft tissue principles to minimize scarring: an overview. Facial Plast. Surg. Clin. N. Am. 25:1–13, 2017.

    Article  Google Scholar 

  140. White, R. A multinational survey of the assessment of pain when removing dressings. Wounds uK 4:14, 2008.

    Google Scholar 

  141. Wiegand, C., T. Heinze, and U. C. Hipler. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen. 17:511–521, 2009.

    Article  PubMed  Google Scholar 

  142. Wysocki, A. B. Skin anatomy, physiology, and pathophysiology. Nurs. Clin. N. Am. 34:777–797, 1999.

    CAS  Google Scholar 

  143. Xu, Q., A. Sigen, Y. Gao, L. Guo, J. Creagh-Flynn, D. Zhou, U. Greiser, Y. Dong, F. Wang, H. Tai, W. Liu, W. Wang, and W. Wang. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 75:63–74, 2018.

    Article  CAS  PubMed  Google Scholar 

  144. Yanaga, H., Y. Udoh, T. Yamauchi, M. Yamamoto, K. Kiyokawa, Y. Inoue, and Y. Tai. Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients. Burns 27:689–698, 2001.

    Article  CAS  PubMed  Google Scholar 

  145. Ya-Xian, Z., T. Suetake, and H. Tagami. Number of cell layers of the stratum corneum in normal skin-relationship to the anatomical location on the body, age, sex and physical parameters. Arch. Dermatol. Res. 291:555–559, 1999.

    Article  CAS  PubMed  Google Scholar 

  146. Yosipovitch, G., G. L. Xiong, E. Haus, L. Sackett-Lundeen, I. Ashkenazi, and H. I. Maibach. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J. Investig. Dermatol. 110:20–23, 1998.

    Article  CAS  PubMed  Google Scholar 

  147. You, H. J., and S. K. Han. Cell therapy for wound healing. J. Korean Med. Sci. 29:311–319, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Medicine by Design-EMHSeed and Ontario Institute for Regenerative Medicine for supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Amini-Nik.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljghami, M.E., Saboor, S. & Amini-Nik, S. Emerging Innovative Wound Dressings. Ann Biomed Eng 47, 659–675 (2019). https://doi.org/10.1007/s10439-018-02186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02186-w

Keywords

Navigation