Skip to main content
Log in

A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver’s emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver’s femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127(3):364–373, 2005.

    Article  PubMed  Google Scholar 

  2. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2):269–279, 2010.

    Article  PubMed  Google Scholar 

  3. Arnoux, P. J., D. Cesari, M. Behr, L. Thollon, and C. Brunet. Pedestrian lower limb injury criteria evaluation: a finite element approach. Traffic Inj. Prev. 6(3):288–297, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Bae, J. Y., K. S. Park, J. K. Seon, and I. Jeon. Analysis of the effects of normal walking on ankle joint contact characteristics after acute inversion ankle sprain. Ann. Biomed. Eng. 43(12):3015–3024, 2015.

    Article  PubMed  Google Scholar 

  5. Behr, M., P. J. Arnoux, T. Serre, L. Thollon, and C. Brunet. Tonic finite element model of the lower limb. J. Biomech. Eng.-Trans. ASME. 128(2):223–228, 2006.

    Article  Google Scholar 

  6. Beillas, P., P. C. Begeman, K. H. Yang, et al. Lower limb: advanced FE model and new experimental data. Stapp Car Crash J. 2001(45):469–494, 2001.

    Google Scholar 

  7. Blanchard, R., A. Dejaco, E. Bongaers, and C. Hellmich. Intravoxel bone micromechanics for micro CT-based finite element simulations. J Biomech. 46(15):2710–2721, 2013.

    Article  PubMed  Google Scholar 

  8. Cao, L., X. Du, G. Zhang, Y. Hu, and K. Zhang. Development and validation of the 50th percentile chinese male lower leg FE model. Automot. Eng. 37(11):1291–1297, 2015.

    Google Scholar 

  9. Crandall, J. Crashworthiness and Biomechanics, Euromotor Course, June 11–13 2001.

  10. Deseri, L., M. D. Paola, M. Zingales, and P. Pollaci. Power-law hereditariness of hierarchical fractal bones. Int. J. Numer. Methods Biomed. Eng. 29(12):1338–1360, 2013.

    Article  Google Scholar 

  11. Hayashi, S., H. Y. Choi, R. S. Levine, K. H. Yang, A. I. King. Experimental and analytical study of knee fracture mechanisms in a frontal knee impact. 40th Stapp Car Crash Conference, Albuquerque, New Mexico, Paper No. 952729, 1996.

  12. Hellmich, C., C. Kober, and B. Erdmann. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36(1):108–122, 2008.

    Article  PubMed  Google Scholar 

  13. Ivarsson, B. J., D. Genovese, J. R. Crandall, J. Bolton, C. Untaroiu, and D. Bose. The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash J. 53:251–290, 2009.

    PubMed  Google Scholar 

  14. Iwamoto, M., A. Tamura, K. Furusu, C. Kato, K. Miki, J. Hasegawa, K. H. Yang. Development of a Finite Element Model of the Human Lower Extremity for Analyses of Automotive Crash Injuries SAE 2000 World Congress & Exhibition, Detroit, Michigan, USA, Paper No. 2000-01-0621, 2000.

  15. Jammes, Yves, Michel Behr, Maxime Llari, Sarah Bonicel, J. P. Weber, and S. Berdah. Emergency braking is affected by the use of cruise control. Traffic Inj. Prev. 2017. doi:10.1080/15389588.2016.1274978.

    PubMed  Google Scholar 

  16. Jiang, X. Q. A Study on the Biomechanical of Occupant Lower Extremity Injuries in Car Frontal Impact Based on Human Body Model. PhD dissertation, Hunan University, 2014.

  17. Kerrigan, J. R., K. S. Bhalla, N. J. Madeley, J. R. Funk, D. Bose, J. R Crandall. Experiments for establishing pedestrian-impact lower limb injury criteria. SAE 2003 World Congress & Exhibition, Detroit, Michigan, USA, Paper No. 2003-01-0895, 2003a.

  18. Kerrigan, J. R., D. C. Drinkwater, C. Y. Kam, et al. Tolerance of the human leg and thigh in dynamic latero-medial bending. Int. J. Crashworth. 9(6):607–623, 2004.

    Article  Google Scholar 

  19. Kikuchi, Y., and Y. Takahashi. Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb. Detroit: SAE World Congress; 2006, 2006.

    Book  Google Scholar 

  20. Kitagawa, Y., H. Ichikawa, A. I. King, R. S. Levine. A severe ankle and foot injury in frontal crashes and its mechanism. SAE 1998 World Congress & Exhibition, Detroit, Michigan, USA, Paper No. 983145, 1998.

  21. Li, F., H. Li, W. Hu, S. Su, and B. Wang. Simulation of muscle activation with coupled nonlinear Fe models. J. Mech. Med. Biol. 16(06):1650082, 2016.

    Article  Google Scholar 

  22. Mo, F., P. J. Arnoux, D. Cesari, and C. Masson. Investigation of the injury threshold of knee ligaments by the parametric study of car–pedestrian impact conditions. Saf. Sci. 62:58–67, 2014.

    Article  Google Scholar 

  23. Mo, F., C. Masson, D. Cesari, and P. J. Arnoux. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety. Traffic Inj Prev. 14(4):378–386, 2013.

    Article  PubMed  Google Scholar 

  24. Myers, B. S., C. A. Van Ee, D. L. Camacho, C. T. Woolley, T. M. Best. On the structural and material properties of mammalian skeletal muscle and its relevance to human cervical impact dynamics. Stapp Car Crash Conference, Paper No. 0148-7191, 1995.

  25. Myers, B. S., C. T. Woolley, T. L. Slotter, W. E. Garrett, T. M. Best, and W. Madison. The influence of strain rate on the passive and stimulated engineering stress-large strain behavior of the rabbit tibialis anterior muscle. J. Biomech. Eng. 120(1):126–132, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Neumann, D. A. Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. St. Louis: Mosby/Elsevier, 2010.

    Google Scholar 

  27. Nguyen, L., S. Stoter, T. Baum, J. Kirschke, M. Ruess, Z. Yosibash, and D. Schillinger. Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures. Int J Numer Methods Biomed. Eng. 2017. doi:10.1002/cnm.2880.

    Google Scholar 

  28. Rupp, J. D., M. P. Reed, C. A. Van Ee, S. Kuppa, S. C. Wang, J. A. Goulet, and L. W. Schneider. The tolerance of the human hip to dynamic knee loading. Stapp Car Crash J. 46(46):211–228, 2002.

    PubMed  Google Scholar 

  29. Shigeta, K., Y. Kitagawa, T. Yasuki. Development of Next Generation Human FE Model Capable of Organ Injury Prediction. The 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), Stuttgart, Germany, Paper No. 09-0111, 2009.

  30. Shin, J., N. Yue, and C. D. Untaroiu. A finite element model of the foot and ankle for automotive impact applications. Ann. Biomed. Eng. 40(12):2519–2531, 2012.

    Article  PubMed  Google Scholar 

  31. Takahashi, Y., Y. Kikuchi, F. Mori, A. Konosu. Advanced FE Lower limb model for pedestrians. 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Nagoya, Japan, Paper No. 218, 2003.

  32. Thelen, D. G., and F. C. Anderson. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 39(6):1107–1115, 2006.

    Article  PubMed  Google Scholar 

  33. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and J. T. Wang. A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash J. 2005(49):157–181, 2005.

    Google Scholar 

  34. Untaroiu, C., B. Ivarsson, D. Genovese, D. Bose, and J. Crandall. Biomechanical injury response of leg subjected to dynamic combined axial and bending loading. Biomed. Sci. Instrum. 44:141–146, 2008.

    PubMed  Google Scholar 

  35. Untaroiu, C., N. Yue, and J. Shin. A finite element model of the lower limb for simulating automotive impacts. Ann. Biomed. Eng. 41:1–14, 2012.

    Google Scholar 

  36. Watanabe, R., H. Miyazaki, Y. Kitagawa, T. Yasuki. Research of Collision Speed Dependency of Pedestrian Head and Chest Injuries Using Human FE Model (THUMS Version 4). The 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, D.C., Paper No. 11-0043, 2011.

  37. Winters, J. M., and L. Stark. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng. 10:826–839, 1985.

    Article  Google Scholar 

  38. Winters, J. M., and L. Stark. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech. 21(12):1027–1041, 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Wittek, A., and J. Kajzer. Modeling of muscle influence on the kinematics of the head-neck complex in impacts. Mem. School Eng. Nagoya University 49:151–205, 1997.

    Google Scholar 

  40. Yao, J., C. Wen, T. Cheung, M. Zhang, Y. Hu, C. Yan, K. Y.-P. Chiu, et al. Deterioration of stress distribution due to tunnel creation in single-bundle and double-bundle anterior cruciate ligament reconstructions. Ann. Biomed. Eng. 40(7):1554–1567, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 51405150, 51475154) and Hunan Province Science and Technology Plan (Grant No. 2015JJ3052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhao Mo.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Appendix

Appendix

See Table 3.

Table 3 Definition of muscle properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Li, F., Behr, M. et al. A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles. Ann Biomed Eng 46, 86–96 (2018). https://doi.org/10.1007/s10439-017-1942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1942-1

Keywords

Navigation