Skip to main content
Log in

Applications of Light Emitting Diodes in Health Care

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other’s field; and hence to stimulate the application of LEDs in health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ablon, G.: Combination 830-nm and 633-nm light-emitting diode phototherapy shows promise in the treatment of recalcitrant psoriasis: preliminary findings. Photomed. Laser Surg. 28:141–146, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Almeida, A. D., B. Santos, B. Paolo, and M. Quicheron. Solid state lighting review potential and challenges in Europe. Renew. Sustain. Energy Rev. 34:30–48, 2014.

    Article  Google Scholar 

  3. Atalay, B., S. Yalcin, Y. Emes, I. Aktas, B. Aybar, H. Issever, N. Mandel, O. Cetin, and B. Oncu. Bisphosphonate-related osteonecrosis: laser-assisted surgical treatment or conventional surgery? Lasers Med. Sci. 26(6):815–823, 2011.

    Article  PubMed  Google Scholar 

  4. Avci, P., A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. Hamblin. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin. Cutan. Med. Surg. 32(1):41–52, 2013.

    PubMed  PubMed Central  Google Scholar 

  5. Baccari, S., F. Vasca, M. Tipaldi, and L. Iannelli. Model predictive control for luminous flux tracking in light-emitting diodes. IEEE Trans. Control Syst. Technol. 25(2):695–703, 2017.

    Article  Google Scholar 

  6. Barolet, D.: Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 27:227–238, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Barolet, D., C. Roberge, F. Auger, A. Boucher, and L. Germain. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J. Investig. Dermatol. 129(12):2751– 2759, 2009

    Article  CAS  PubMed  Google Scholar 

  8. Basri, R., and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2):218–233, 2003.

    Article  Google Scholar 

  9. Beckmann, K., G. Meyer-Hamme, and S. Schröder. Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey. Evid. Based Complement. Altern. Med. 2014:1–9, 2014.

    Article  Google Scholar 

  10. Bender, V., A. Cardoso, G. Flores, C. Rech, and T. Marchesan. Electrothermal feedback of a LED lighting system: modeling and control. In: Proceedings of 38th IEEE IECON, pp. 4545–4550, 2012.

  11. Bolton, P., S. Young, and M. Dyson. Macrophage responsiveness to light therapy: a dose response study. Laser Ther. 1(4):101–106, 1990.

    Article  Google Scholar 

  12. Bouchard, M., B. Chen, S. Burgess, and E. Hillman. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Opt. Express 17(18):15670–15678, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyd, S., and L. Vandenberghe. Convex Optimization. Cambridge: Cambridge University Press, 2004.

    Book  Google Scholar 

  14. Cassano, P., S. Petrie, M. Hamblin, T. Henderson, and D. Iosifescu. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3(3): 031404, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Celli, J., B. Spring, I. Rizvi, C. Evans, K. Samkoe, S. Verma, B. Pogue, and T. Hasan. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110(5):2795–2838, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, T., K. Jia, E. Wycoff, C. Chi, and Y. Ma. Towards optimal design of time and color multiplexing codes. In: Proceedings of ECCV, pp. 485–498, 2012.

  17. Chen, S., T. Badea, and S. Hatta. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, S., J. Zhang, H. Zhang, N. Kwok, and Y. Li. Intelligent lighting control for vision-based robotic manipulation. IEEE Trans. Ind. Electron. 59(8):3254–3263, 2012.

    Article  Google Scholar 

  19. Chung, H., T. Dai, S. Sharma, Y. Huang, J. Carroll, and M. Hamblin. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40(2):516–533, 2012.

    Article  PubMed  Google Scholar 

  20. Clancy, N., R. Li, K. Rogers, P. Driscoll, P. Excel, R. Yandle, G. Hanna, N. Copner, and D. Elson. Development and evaluation of a light-emitting diode endoscopic light source. Proc. SPIE 8214:82140R–82140R-7, 2012.

    Article  Google Scholar 

  21. Cree, Inc. Product Family Data Sheet: Cree XLamp ML-E LEDs. Durham: Cree, Inc.

  22. de Freitas, L., and M. Hamblin. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22(3):348–364, 2016.

    Article  Google Scholar 

  23. Descombes, A., and W. Guggenbuhl. Large signal circuit model for LED’s used in optical communication. IEEE Trans. Electron Devices 28:395–404, 1981.

    Article  Google Scholar 

  24. Deurenberg, P., C. Hoelen, J. van Meurs, and J. Ansems. Achieving color point stability in RGB multi-chip LED modules using various color control loops. Proc. SPIE 5941: 63–74, 2005.

    Google Scholar 

  25. Dong, J., and A. Pandharipande. Efficient distributed control of light-emitting diode array lighting systems. Opt. Lett. 37(14):2910–2912, 2012.

    Article  PubMed  Google Scholar 

  26. Dong, J., and G. Zhang. Identification and robust control of the nonlinear photoelectrothermal dynamics of LED systems. IEEE Trans. Ind. Electron. 64(3):2215–2225, 2017.

    Article  Google Scholar 

  27. Dong, J., W. van Driel, and G. Zhang. Automatic diagnosis and control of distributed solid state lighting systems. Opt. Express 19:5772–5784, 2011.

    Article  PubMed  Google Scholar 

  28. Donnell, P. M., P. M. Hugh, and D. O. Mahoney. Vertebral osteoporosis and trabecular bone quality. Ann. Biomed. Eng. 35(2):170–189, 2007.

    Article  Google Scholar 

  29. Eltoft, T., and R. de Figueiredo. Illumination control as a means of enhancing image features in active vision systems. IEEE Trans. Image Process. 4(11):1520–1530, 1995.

    Article  CAS  PubMed  Google Scholar 

  30. Goldberg, D.: Current trends in intense pulsed light. J. Clin. Aesthet. Dermatol. 5(6):45–53, 2012.

    PubMed  PubMed Central  Google Scholar 

  31. Gorostiza, P., and E. Isacoff. Optical switches for remote and noninvasive control of cell signaling. Science 322(5900):395–399, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Gradinaru, V., M. Mogri, K. Thompson, J. Henderson, and K. Deisserot. Optical deconstruction of Parkinsonian neural circuitry. Science 324:354–359, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Gray, D., E. Kim, V. Cotero, A. Bajaj, V. Staudinger, C. Hehir, and S. Yazdanfar. Dual-mode laparoscopic fluorescence image-guided surgery using a single camera. Biomed. Opt. Express 3(8):1880–1890, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hamblin, M., R. Waynant, and J. Anders. The importance of coherence in phototherapy. In: Proceedings of SPIE. Mechanisms for Low-Light Therapy IV, vol 7165, p. 716507, 2009.

  35. Hattar, S., H. Liao, M. Takao, D. Berson, and K. Yau. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hennessy, M., and M. Hamblin. Photobiomodulation and the brain: a new paradigm. J. Opt. 19(1):013003, 2017.

    Article  PubMed  Google Scholar 

  37. Huang, B., and C. Tang. Thermal electrical luminous model of multi-chip polychromatic LED luminaire. Appl. Therm. Eng. 29:3366–3373, 2009.

    Article  CAS  Google Scholar 

  38. Huang, B., P. Hsu, M. Wu, and C. Tang. Study of system dynamics model and control of a high-power LED lighting luminaire. Energy 32:2187–2198, 2007.

    Article  CAS  Google Scholar 

  39. Huang, Y., S. Sharma, J. Carroll, and M. Hamblin. Biphasic dose response in low level light therapy an update. Dose Response 9(4):602–618, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iaccarino, H., A. Singer, A. Martorell, A. Rudenko, F. Gao, T. Gillingham, H. Mathys, J. Seo, O. Kritskiy, F. Abdurrob, C. Adaikkan, R. Canter, R. Rueda, E. Brown, E. Boyden, and L. Tsai. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540:230–235, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ibe, O., E. Morency, P. Sosa, and L. Burkow-Heikkinen. The role of near-infrared light-emitting diodes in aging adults related to inflammation. Healthy Aging Res. 4(24):1–12, 2015.

    Google Scholar 

  42. Karu, T., and S. Kolyakov. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23(4):355–361, 2005.

    Article  CAS  PubMed  Google Scholar 

  43. Karunatilaka, D., F. Zafar, V.. Kalavally, and R. Parthiban. LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3):1649–1678, 2015.

    Article  Google Scholar 

  44. Khwaounjoo, P., S. Rutherford, M. Svrcek, I. LeGrice, M. Trew, and B. Smaill. Image-based motion correction for optical mapping of cardiac electrical activity. Ann. Biomed. Eng. 43(5):1235–1246, 2015.

    Article  PubMed  Google Scholar 

  45. Lee, M., D. Seo, B. Seo, and J. Park. Optimal illumination for discriminating objects with different spectra. Opt. Lett. 34(17):2664–2666, 2009.

    Article  PubMed  Google Scholar 

  46. Li, S., S. Tan, C. Lee, E. Waffenschmidt, S. Hui, and C. Tse. A survey, classification, and critical review of light-emitting diode drivers. IEEE Trans. Power Electron. 31(2):1503–1516, 2016.

    Article  Google Scholar 

  47. Liu, P., H. Wang, Y. Zhang, J. Shen, R. Wu, Z. Zheng, H. Li, and X. Liu. Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method. Opt. Commun. 319:133–140, 2014.

    Article  CAS  Google Scholar 

  48. Ljung, L. System Identification: Theory for the User. Englewood Cliffs: Prentice Hall, 1987.

    Google Scholar 

  49. Lorenz-Fonfria, V., T. Resler, N. Krause, M. Nack, M. Gossing, G. von Mollard, C. Bamann, E. Bamberg, R. Schlesinger, and J. Heberle. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc. Natl Acad. Sci. USA 110(14):E1273–E1281, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo, X., R. Hu, S. Liu, and K. Wang. Heat and fluid flow in high-power LED packaging and applications. Prog. Energy Combust. Sci. 56:1–32, 2016.

    Article  Google Scholar 

  51. Meng, C., Z. He, and D. Xing. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J. Neurosci. 33(33):13505–13517, 2013.

    Article  CAS  PubMed  Google Scholar 

  52. Milias-Argeitis, A., S. Summers, J. Stewart-Ornstein, I. Zuleta, D. Pincus, H. El-Samad, M. Khammash, and J. Lygeros. In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29:1114–1116, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreno, I.: Image-like illumination with LED arrays: design. Opt. Lett. 37:839–841, 2012.

    Article  PubMed  Google Scholar 

  54. Moreno, I., and U. Contreras. Color distribution from multicolor LED arrays. Opt. Express 15:3607–3618, 2007.

    Article  PubMed  Google Scholar 

  55. Murase, H., and S. Nayar. Illumination planning for object recognition using parametric eigenspaces. IEEE Trans. Pattern Anal. Mach. Intell. 16(12):1219–1221, 1994.

    Article  Google Scholar 

  56. Naeser, M., A. Saltmarche, M. Krengel, M. Hamblin, and J. Knight. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29(5):351–358, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Narendran, N., Y. Gu, J. Freyssinier, H. Yu, and L. Deng. Solid-state lighting: failure analysis of white LEDs. J. Cryst. Growth 268(34):449–456, 2004.

    Article  CAS  Google Scholar 

  58. Nistico, S., R. Saraceno, S. Stefanescu, and S. Chimenti. A 308-nm monochromatic excimer light in the treatment of palmoplantar psoriasis. J. Eur. Acad. Dermatol. 20(5):523–526, 2006.

    Article  CAS  Google Scholar 

  59. Ohta, N., and A. Robertson. Colorimetry: Fundamentals and Applications. Chichester: Wiley, 2005.

    Book  Google Scholar 

  60. Olson, E., and J. Tabor. Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nat. Chem. Biol. 10:502–511, 2014.

    Article  CAS  PubMed  Google Scholar 

  61. Orsinger, G., J. Watson, M. Gordon, A. Nymeyer, E. de Leon, J. Brownlee, K. Hatch, S. Chambers, J. Barton, R. Kostuk, and M. Romanowski. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging. J. Biomed. Opt. 19(3):036020, 2014.

    Article  PubMed Central  Google Scholar 

  62. Park, J., M. Lee, M. Grossberg, and S. Nayar. Multispectral imaging using multiplexed illumination. In: Proceedings of ICCV, pp. 1–8, 2007.

  63. Pigula, A., N. Clancy, S. Arya, G. Hanna, and D. Elson. Video-rate dual polarization multispectral endoscopic imaging. Proc. SPIE 9333:93330N–93330N-4, 2015.

    Article  Google Scholar 

  64. Posten, W., D. Wrone, J. Dover, F. Kenneth, A. Arndt, S. Silapunt, and M. Alam. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol. Surg. 31:334–340, 2005.

    Article  CAS  PubMed  Google Scholar 

  65. Prasad, P. Introduction to Biophotonics. Hoboken: Wiley, 2003.

    Book  Google Scholar 

  66. Qu, X., S. Wong, and C. Tse. Noncascading structure for electronic ballast design for multiple LED lamps with independent brightness control. IEEE Trans. Power Electron. 25(2):331–340, 2010.

    Article  Google Scholar 

  67. Ratner, N., Y. Schechner, and F. Goldberg. Optimal multiplexed sensing: bounds, conditions and a graph theory link. Opt. Express 15(25):17072–17092, 2007.

    Article  PubMed  Google Scholar 

  68. Roberson, E., and A. Bowcock. Psoriasis genetics: breaking the barrier. Trends Genet. 26(9):415–423, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roes, M., J. Duarte, and M. Hendrix. Disturbance observer-based control of a dual-output LLC converter for solid-state lighting applications. IEEE Trans. Power Electron. 26(7):2018–2027, 2011.

    Article  Google Scholar 

  70. Schechner, Y., S. Nayar, and P. Belhumeur. Multiplexing for optimal lighting. IEEE Trans. Pattern Anal. Mach. Intell. 29(8):1339–1354, 2007.

    Article  PubMed  Google Scholar 

  71. Schiffer, F., A. Johnston, C. Ravichandran, A. Polcari, M. Teicher, R. Webb, and M. Hamblin. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 5:46, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schubert, E., and J. Kim. Solid-state light sources getting smart. Science 308:1274–1278, 2005.

    Article  CAS  PubMed  Google Scholar 

  73. Schulze, P., L. Barreira, H. Pereira, J. Perales, and J. Varela. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 32(8):422–430, 2014.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, S., G. Kharkwal, M. Sajo, Y. Huang, L. D. Taboada, T. McCarthy, and M. Hamblin. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg. Med. 43(8):851–859, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shrivastava, A., B. Singh, and S. Pal. A novel wall-switched step-dimming concept in LED lighting systems using PFC zeta converter. IEEE Trans. Ind. Electron. 62(10):6272–6283, 2015.

    Article  Google Scholar 

  76. Sohn, H., Y. Ko, M. Park, D. Kim, Y. Moon, Y. Jeong, H. Lee, Y. Moon, B. Jeong, O. Kim, and W. Lim. Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Laser Surg. Med. 47:745–755, 2015.

    Article  Google Scholar 

  77. Stange, D., N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica 4(2):185–188, 2017.

    Article  Google Scholar 

  78. Stoyanov, D.: Surgical vision. Ann. Biomed. Eng. 40(2):332–345, 2012.

    Article  PubMed  Google Scholar 

  79. Sun, C., W. Chien, I. Moreno, C. Hsieh, and Y. Lo. Analysis of the far-field region of LEDs. Opt. Express 17:13918–13927, 2009.

    Article  PubMed  Google Scholar 

  80. Taheri, S., A. Sankaranarayanan, and R. Chellappa. Joint albedo estimation and pose tracking from video. IEEE Trans. Pattern Anal. Mach. Intell. 35(7):1674–1689, 2013.

    Article  PubMed  Google Scholar 

  81. Tao, X., and S. Hui. Dynamic photoelectrothermal theory for LED systems. IEEE Trans. Ind. Electron. 59(4):1751–1759, 2012.

    Article  Google Scholar 

  82. Tchanque-Fossuo, C., D. Ho, S. Dahle, E. Koo, C. Li, R. Isseroff, and J. Jagdeo. A systematic review of low-level light therapy for treatment of diabetic foot ulcer. Wound Repair Regen. 24:418–426, 2016.

    Article  PubMed  Google Scholar 

  83. Toettcher, J., O. Weiner, and W. Lim. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155:1422–1434, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Bommel, W.: Non-visual biological effect of lighting and the practical meaning for lighting for work. Appl. Ergon. 37(4):461–466, 2006.

    Article  PubMed  Google Scholar 

  85. van de Meugheuvel, N., A. Pandharipande, D. Caicedo, and P. van den Hof. Distributed lighting control with daylight and occupancy adaptation. Energy Build. 75:321–329, 2014.

    Article  Google Scholar 

  86. Wang, F., C. Tang, and B. Huang.: Multivariable robust control for a red-green-blue LED lighting system. IEEE Trans. Power Electron. 25(2):417–428, 2010.

    Article  Google Scholar 

  87. Wang, S., X. Ruan, K. Yao, S. Tan, Y. Yang, and Z. Ye. A flicker free electrolytic capacitor-less ACDC LED driver. IEEE Trans. Power Electron. 27(11):4540–4548, 2012.

    Article  Google Scholar 

  88. Wang, X., X. Chen, and Y. Yang. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9(3):266–271, 2012.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H., R. Cuijpers, M. Luo, I. Heynderickx, and Z. Zheng. Optimal illumination for local contrast enhancement based on the human visual system. J. Biomed. Opt. 20(1):015005-1–015005-8, 2015.

    Article  Google Scholar 

  90. Whelan, H., R. Smits, E. Buchman, et al. Effect of NASA light emitting diode irradiation on wound healing. J. Clin. Laser Med. Surg. 6:305–314, 2001.

    Article  Google Scholar 

  91. Wieringa, F., F. Mastik, F. Cate, H. Neumann, and A. van der Steen. Remote non-invasive stereoscopic imaging of blood vessels: first in-vivo results of a new multispectral contrast enhancement technology. Ann. Biomed. Eng. 34(12):1870–1878, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wong, B., B. Hsu, and M. Liao. Phototherapy in psoriasis: a review of mechanisms of action. J. Cutan. Med. Surg. 17(1):6–12, 2013.

    Article  CAS  PubMed  Google Scholar 

  93. Woo, D., C. Ko, H. Kim, J. Seo, and D. Lim. Evaluation of the potential clinical application of low-intensity ultrasound stimulation for preventing osteoporotic bone fracture. Ann. Biomed. Eng. 38(7):2438–2446, 2010.

    Article  PubMed  Google Scholar 

  94. Wu, H., J. Dong, G. Qi, and G. Zhang. Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints. J. Opt. Soc. Am. A 32(7):1262–1270, 2015.

    Article  Google Scholar 

  95. Wu, H., J. Dong, and G. Zhang. Increasing color saturation by optimizing light spectra constrained on color rendering properties. J. Opt. Soc. Am. A 33(2):192–204, 2016.

    Article  Google Scholar 

  96. Xavier, M., D. David, R. de Souza, A. Arrieiro, H. Miranda, E. Santana, J. Silva, M. Salgado, F. Aimbire, and R. Albertini. Anti-inflammatory effects of low-level light emitting diode therapy on achilles tendinitis in rats. Laser Surg. Med. 42(6):553–558, 2010.

    Article  Google Scholar 

  97. Yang, H., J. Bergmans, T. Schenk, J. Linnartz, and R. Rietman. An analytical model for the illuminance distribution of a power LED. Opt. Express 16:21641–21646, 2008.

    Article  PubMed  Google Scholar 

  98. Ye, Y., K. Cheng, J. Lin, and D. Wang. Single-switch multichannel current-balancing LED drive circuits based on optimized SC techniques. IEEE Trans. Ind. Electron. 62(8):4761–4768, 2015.

    Article  Google Scholar 

  99. Yeh, N., C. Wu, and T. Cheng. Light-emitting diodes—their potential in biomedical applications. Renew. Sustain. Energy Rev. 14(8):2161–2166, 2010.

    Article  CAS  Google Scholar 

  100. Zanolli, M. Phototherapy treatment of psoriasis today. J. Am. Acad. Dermatol. 49(2):78–86, 2003.

    Article  Google Scholar 

  101. Zhang, K., and B. Cui. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33(2):92–100, 2015.

    Article  PubMed  Google Scholar 

  102. Zheng, G., C. Kolner, and C. Yang. Microscopy refocusing and dark-field imaging by using a simple LED array. Opt. Lett. 36(20):3987–3989, 2011.

    Article  PubMed  Google Scholar 

  103. Zhou, K., J. Doyle, and K. Glover. Robust and Optimal Control. Upper Saddle River: Prentice Hall, 1996.

    Google Scholar 

Download references

Acknowledgments

J. Dong would like to thank the Sponsorship of National Key R&D Program of China (No. 2017YFC0108500, Subproject No. 2017YFC0108502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Dong.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Xiong, D. Applications of Light Emitting Diodes in Health Care. Ann Biomed Eng 45, 2509–2523 (2017). https://doi.org/10.1007/s10439-017-1930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1930-5

Keywords

Navigation