Skip to main content
Log in

Poly-N-Acetyl Glucosamine (sNAG) Enhances Early Rotator Cuff Tendon Healing in a Rat Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Rotator cuff injuries frequently require surgical repairs which have a high failure rate. Biological augmentation has been utilized in an attempt to improve tendon repair. Poly-N-acetyl glucosamine (sNAG) polymer containing nanofibers has been shown to increase the rate for healing of venous leg ulcers. The purpose of this study was to investigate the healing and analgesic properties of sNAG in a rat rotator cuff injury and repair model. 144 adult male Sprague–Dawley rats underwent a transection and repair of their left supraspinatus tendons. Half of the animals received a sNAG membrane on the tendon-to-bone insertion site. Animals were further subdivided, receiving 1 or 3 days of analgesics. Animals were sacrificed 2, 4, or 8 weeks post-injury. Animals sacrificed at 4 and 8 weeks underwent longitudinal in vivo ambulatory assessment. Histological properties were assessed at 2, 4, and 8 weeks, and mechanical properties at 4 and 8 weeks. In the presence of analgesics, tendons receiving the sNAG polymer had significantly increased max load and max stress at 4 weeks, but not at 8 weeks. Ambulatory improvements were observed at 14 days in stride length and speed. Therefore, sNAG improves tendon-to-bone healing in a rat rotator cuff detachment and repair model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beason, D. P., B. K. Connizzo, L. M. Dourte, R. L. Mauck, L. J. Soslowsky, D. R. Steinberg, and J. Bernstein. Fiber-aligned polymer scaffolds for rotator cuff repair in a rat model. J. Shoulder Elb. Surg. 21:245–250, 2012.

    Article  Google Scholar 

  2. Bey, M. J., H. K. Song, F. W. Wehrli, and L. J. Soslowsky. A noncontact, nondestructive method for quantifying intratissue deformations and strains. J. Biomech. Eng. 124:253–258, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Caro, A. C., J. J. Tucker, S. M. Yannascoli, A. A. Dunkman, S. J. Thomas, and L. J. Soslowsky. Efficacy of various analgesics on shoulder function and rotator cuff tendon-to-bone healing in a rat (Rattus norvegicus) model. J. Orthop. Res. 32(11):1436–1443, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Connizzo, B. K., S. M. Yannascoli, J. J. Tucker, A. C. Caro, C. N. Riggin, R. L. Mauck, L. J. Soslowsky, D. R. Steinberg, and J. Bernstein. The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clin. Orthop. Relat. Res. 472:2433–2439, 2014.

    Article  PubMed  Google Scholar 

  5. Dolkart, O., O. Chechik, Y. Zarfati, T. Brosh, F. Alhajajra, and E. Maman. A single dose of platelet-rich plasma improves the organization and strength of a surgically repaired rotator cuff tendon in rats. Arch. Orthop. Trauma Surg. 134:1271–1277, 2014.

    Article  PubMed  Google Scholar 

  6. Favata M. Scarless healing in the fetus: implications and strategies for postnatal tendon repair. Thesis Dissertation, University of Pennsylvania, Philadelphia, 2006.

  7. Galatz, L. M., C. M. Ball, S. A. Teefey, W. D. Middleton, and K. Yamaguchi. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Joint Surg. Am. 86-A:219–224, 2004.

    Article  PubMed  Google Scholar 

  8. Gimbel, J. A., J. P. Van Kleunen, S. Mehta, S. M. Perry, G. R. Williams, and L. J. Soslowsky. Supraspinatus tendon organizational and mechanical properties in a chronic rotator cuff tear animal model. J. Biomech. 37:739–749, 2004.

    Article  PubMed  Google Scholar 

  9. Gimbel, J. A., J. P. Van Kleunen, G. R. Williams, S. Thomopoulos, and L. J. Soslosky. Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J. Biomech. Eng. 129(499–404):2007, 2007.

    Google Scholar 

  10. Hernigou, P., C. H. F. Lachaniette, J. Delambre, S. Zilber, P. Duffiet, N. Chevallier, and H. Rouard. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int. Orthop. 38(9):1811–1818, 2014.

    Article  PubMed  Google Scholar 

  11. Huegel, J., D. H. Kim, J. M. Cirone, A. M. Pardes, T. R. Morris, C. A. Nuss, R. L. Mauck, L. J. Soslowsky, and A. F. Kuntz. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J. Orthop. Res. 35(6):1250–1257, 2017.

    Article  CAS  PubMed  Google Scholar 

  12. Kelechi, T. J., M. Muller, C. S. Hankin, A. Bronstone, J. Samies, and P. A. Bonham. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine–derived membrane material in patients with venous leg ulcers. J. Am. Acad. Dermatol. 66:e209–e215, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly, M. A. Addressing the opioid epidemic with multimodal pain management. Am. J. Orthop. 45(7):S6–S8, 2016.

    PubMed  Google Scholar 

  14. Kovacevic, D., L. V. Gulotta, L. Ying, J. R. Ehteshami, X. H. Deng, and S. A. Rodeo. rhPDGF-bb promotes early healing in a rat rotator cuff repair model. Clin. Orthop. Relat. Res. 473:1644–1654, 2015.

    Article  PubMed  Google Scholar 

  15. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27(12):1596–1602, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Linder, H. B., L. M. Felmly, M. Demcheva, A. Seth, R. Norris, A. D. Bradshaw, J. Vournakis, and R. C. Muise-Helmericks. pGlcNAc nanofiber treatment of cutaneous wounds stimulate increased tensile strength and reduced scarring via activation of Akt1. PLoS ONE 10(5):e0127876, 2015.

    Article  Google Scholar 

  17. Morykwas, M. J., J. W. Thornton, and R. H. Bartlett. Zeta potential of synthetic and biological skin substitutes: effects on initial adherence. Plast. Reconstr. Surg. 79(5):732–739, 1987.

    Article  CAS  PubMed  Google Scholar 

  18. Peltz, C. D., J. E. Hsu, M. H. Zgonis, N. A. Trasolini, D. L. Glaser, and L. J. Soslowsky. Intra-articular changes precede extra-articular changes in the biceps tendon after rotator cuff tears in a rat model. J. Shoulder Elb. Surg. 21(7):873–881, 2012.

    Article  Google Scholar 

  19. Peña, E., S. Sala, J. C. Rovira, R. F. Schmidt, and C. Belmonte. Elastoviscous substances with analgesic effects on joint pain reduce stretch-activated ion channel activity in vitro. Pain (Amst). 3:501–508, 2002.

    Article  Google Scholar 

  20. Sarver, J. J., M. I. Dishowitz, S. Y. Kim, and L. J. Soslowsky. Transient decreases in forelimb gait and ground reaction forces following rotator cuff injury and repair in a rat model. J. Biomech. 43:778–782, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scherer, S. S., G. Pietramaggiori, J. Matthew, S. Perry, A. Assmann, A. Carothers, M. Demcheva, R. C. Muise-Helmericks, A. Seth, J. Vournakis, R. C. Valeri, T. H. Fischer, H. B. Hechtman, and D. P. Orgill. Poly-N-acetyl glucosamine nanofibers: a new bioactive material to enhance diabetic wound healing by cell migration and angiogenesis. Ann. Surg. 250(2):322–330, 2009.

    Article  PubMed  Google Scholar 

  22. Soslowsky, L. J., J. E. Carpenter, C. M. DeBano, I. Banerji, and M. R. Moalli. Development and use of an animal model for investigations on rotator cuff disease. J. Shoulder Elb. Surg. 5(5):383–392, 1996.

    Article  CAS  Google Scholar 

  23. Thatte, H. S., S. E. Zagarins, M. Amiji, and S. F. Khuri. Poly-N-acetyl glucosamine-mediated red blood cell interactions. J. Trauma 57:S7–S12, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Thatte, H. S., S. E. Zagarins, S. F. Khuri, and T. H. Fischer. Mechanisms of poly-N-acetyl glucosamine polymer-mediated hemostasis: platelet interactions. J. Trauma 57:S13–S21, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  PubMed  Google Scholar 

  26. Tsuji, T., J. Yoon, N. Kitano, T. Okura, and K. Tanaka. Effects of N-acetyl glucosamine and chondroitin sulfate supplementation on knee pain and self-reported knee function in middle-aged and older Japanese adults: a randomized, double-blind, placebo-controlled trial. Aging Clin. Exp. Res. 28(2):197–205, 2016.

    Article  PubMed  Google Scholar 

  27. Vournakis, J. N., M. Demcheva, A. Whitson, R. Guirca, and E. R. Pariser. Isolation, purification, and characterization of poly-N-acetyl glucosamine use as a hemostatic agent. J. Trauma 57:1–6, 2004.

    Article  Google Scholar 

  28. Weber, S. C., J. I. Kauffman, C. Parise, S. J. Weber, and S. D. Katz. Platelet-rich fibrin matrix in the matrix management of arthroscopic repair of the rotaor cuff: a prospective, randomized, double-blinded study. Am. J. Sports Med. 41:263–270, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Marine Polymer Technologies, Inc. and the Penn Center for Musculoskeletal Disorders (P30 AR069619). We thank Cody Hillin and Jessica Johnston for assistance with surgical procedures, and Carrie Barnum for assistance with in vivo ambulatory assessments. Study approved by University of Pennsylvania IACUC (Protocol #805836).

Conflict of interest

The author (LJS) has received funding during the conduct of the study related directly to the subject of this manuscript from Marine Polymer Technologies Inc, and has also received funding from commercial entities related indirectly to the subject of this manuscript. The author (JV) is employed by Marine Polymer Technologies, owns stock in the company, and supplied the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Soslowsky.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuss, C.A., Huegel, J., Boorman-Padgett, J.F. et al. Poly-N-Acetyl Glucosamine (sNAG) Enhances Early Rotator Cuff Tendon Healing in a Rat Model. Ann Biomed Eng 45, 2826–2836 (2017). https://doi.org/10.1007/s10439-017-1923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1923-4

Keywords

Navigation