Skip to main content

Advertisement

Log in

Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles

  • Reproductive Tissue Engineering
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In vitro culture of ovarian follicles isolated or enclosed in ovarian tissue fragments and grafting of isolated ovarian follicles represent a potential alternative to restore fertility in cancer patients who cannot undergo cryopreservation of embryos or oocytes or transplantation of frozen-thawed ovarian tissue. In this regard, respecting the three-dimensional (3D) architecture of isolated follicles is crucial to maintaining their proper follicular physiology. To this end, alginate hydrogel has been widely investigated using follicles from numerous animal species, yielding promising results. The goal of this review is therefore to provide an overview of alginate applications utilizing the biomaterial as a scaffold for 3D encapsulation of isolated ovarian follicles. Different methods of isolated follicle encapsulation in alginate are discussed in this review, as its use of 3D alginate culture systems as a tool for in vitro follicle analysis. Possible improvements of this matrix, namely modification with arginine-glycine-aspartic acid peptide or combination with fibrin, are also summarized. Encouraging results have been obtained in different animal models, and particularly with isolated follicles encapsulated in alginate matrices and grafted to mice. This summary is designed to guide the reader towards development of next-generation alginate scaffolds, with enhanced properties for follicle encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with permission from Manivasagan and Oh, 2016, ©Elsevier (2016).

Figure 2

Reprinted with permission from Shikanov et al.,90 Journal of Visualized Experiments (2016).

Figure 3

©Reprinted with permission from Park et al.,72 Springer Science + Business Media (2016).

Figure 4

Reprinted with permission from Shikanov et al.,90 Journal of Visualized Experiments (2016).

Figure 5

Reprinted with permission from Choi et al.,23 ©Elsevier (2016).

Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AMH:

Anti-Müllerian hormone

ANGPT-1:

Angiopoietin-1

ANGPT-2:

Angiopoietin-2

boECM:

Bovine decellularized ovarian extracellular matrix

ECM:

Extracellular matrix

FSH:

Follicle-stimulating hormone

GC:

Granulosa cell

LH:

Luteinizing hormone

MEF:

Mouse embryonic fibroblast

RGD:

Arginine-glycine-aspartic acid

VEGF:

Vascular endothelial growth factor

References

  1. Abir, R., S. Franks, M. A. Mobberley, P. A. Moore, R. A. Margara, and R. M. Winston. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil. Steril. 68:682–688, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal, P., J. K. Choi, H. Huang, S. Zhao, J. Dumbleton, J. Li, and X. He. A biomimetic core-shell platform for miniaturized 3D cell and tissue engineering. Part. Part. Syst. Charact. 32:809–816, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Shamkhani, A., and R. Duncan. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym. 10:4–13, 1995.

    CAS  Google Scholar 

  4. Amorim, C. A. Artificial ovary. In: Gonadal Tissue Cryopreservation in Fertility, edited by N. Suzuki, and J. Donnez. New York: Springer, 2016, pp. 175–192.

    Google Scholar 

  5. Amorim, C. A., D. Rondina, C. M. Lucci, A. Giorgetti, J. R. de Figueiredo, and P. B. Goncalves. Cryopreservation of sheep primordial follicles. Reprod. Domest. Anim. 42:53–57, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Amorim, C. A., and A. Shikanov. The artificial ovary: current status and future perspectives. Future Oncol. 12:2323–2332, 2016.

    Article  CAS  PubMed  Google Scholar 

  7. Amorim, C. A., A. Van Langendonckt, A. David, M. M. Dolmans, and J. Donnez. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum. Reprod. 24:92–99, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. Andersen, T., P. Auk-Emblem, and M. Dornish. 3D cell culture in alginate hydrogels. Microarrays (Basel) 4:133–161, 2015.

    Article  Google Scholar 

  9. Andersen, T., C. Markussen, M. Dornish, H. Heier-Baardson, J. E. Melvik, E. Alsberg, and B. E. Christensen. In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng. A 20:600–610, 2014.

    CAS  Google Scholar 

  10. Andreu, N., D. Thomas, L. Saraiva, N. Ward, K. Gustafsson, S. N. Jayasinghe, and B. D. Robertson. In vitro and in vivo interrogation of bio-sprayed cells. Small 8:2495–2500, 2012.

    Article  CAS  PubMed  Google Scholar 

  11. Araújo, V. R., M. O. Gastal, A. Wischral, J. R. Figueiredo, and E. R. Gastal. In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology 82:1246–1253, 2014.

    Article  PubMed  CAS  Google Scholar 

  12. Asgari, F., M. R. Valojerdi, B. Ebrahimi, and R. Fatehi. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue. Cryobiology 71:529–536, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett, S. L., L. D. Shea, and T. K. Woodruff. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol. Reprod. 82:1180–1189, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhakta, G., K. H. Lee, R. Magalhães, F. Wen, S. S. Gouk, D. W. Hutmacher, and L. L. Kuleshova. Cryopreservation of alginate-fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials 30:336–343, 2009.

    Article  CAS  PubMed  Google Scholar 

  15. Bian, J., T. Li, C. Ding, W. Xin, B. Zhu, and C. Zhou. Vitreous cryopreservation of human preantral follicles encapsulated in alginate beads with mini mesh cups. J. Reprod. Dev. 59:288–295, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bible, E., F. Dell’Acqua, B. Solanky, A. Balducci, P. M. Crapo, S. F. Badylak, E. T. Ahrens, and M. Modo. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials 33:2858–2871, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bidarra, S. J., C. C. Barrias, K. B. Fonseca, M. A. Barbosa, R. A. Soares, and P. L. Granja. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 32:7897–7904, 2011.

    Article  CAS  PubMed  Google Scholar 

  18. Brito, I. R., C. M. Silva, A. B. Duarte, I. M. Lima, G. Q. Rodrigues, R. Rossetto, A. D. Sales, C. H. Lobo, M. P. Bernuci, A. C. Rosa-E-Silva, C. C. Campello, M. Xu, and J. R. Figueiredo. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles. Mol. Reprod. Dev. 81:636–645, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Brito, I. R., G. M. Silva, A. D. Sales, C. H. Lobo, G. Q. Rodrigues, R. F. Sousa, A. Moura, C. Calderón, M. Bertolini, C. C. Campello, J. Smitz, and J. R. Figueiredo. Fibrin-alginate hydrogel supports steroidogenesis, in vitro maturation of oocytes and parthenotes production from caprine preantral follicles cultured in group. Reprod. Domest. Anim. 51:997–1009, 2016.

    Article  CAS  PubMed  Google Scholar 

  20. Butcher, L., and S. L. Ullmann. Culture of preantral ovarian follicles in the grey, short-tailed opossum, Monodelphis domestica. Reprod. Fertil. Dev. 8:535–539, 1996.

    Article  CAS  PubMed  Google Scholar 

  21. Camboni, A., A. Van Langendonckt, J. Donnez, J. Vanacker, M. M. Dolmans, and C. A. Amorim. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology 67:64–69, 2013.

    Article  CAS  PubMed  Google Scholar 

  22. Chiti, C., A. Viswanath, J. Vanacker, L. Germain, L. J. White, M. M. Dolmans, A. Des Rieux and C. A. Amorim. Hydrogel from bovine decellularized ovarian extracellular matrix supports mouse follicle survival in vitro. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. doi: 10.3389/conf.FBIOE.2016.01.00014.

  23. Choi, J. K., P. Agarwal, H. Huang, S. Zhao, and X. He. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials 35:5122–5128, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cortvrindt, R. G., and J. E. Smitz. Follicle culture in reproductive toxicology: a tool for in vitro testing of ovarian function? Hum. Reprod. Update 8:243–254, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Crapo, P. M., S. Tottey, P. F. Slivka, and S. F. Badylak. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng. A 20:313–323, 2014.

    Article  CAS  Google Scholar 

  26. Dalheim, M. Ø., J. Vanacker, M. A. Najmi, F. L. Aachmann, B. L. Strand, and B. E. Christensen. Efficient functionalization of alginate biomaterials. Biomaterials 80:146–156, 2016.

    Article  CAS  PubMed  Google Scholar 

  27. Desai, N., F. Abdelhafez, A. Calabro, and T. Falcone. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod. Biol. Endocrinol. 10:29, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desai, B. J., H. E. Gruber, and E. N. Hanley, Jr. The influence of Matrigel or growth factor reduced Matrigel on human intervertebral disc cell growth and proliferation. Histol. Histopathol. 14:359–368, 1999.

    CAS  PubMed  Google Scholar 

  29. Dhoot, N. O., C. A. Tobias, I. Fischer, and M. A. Wheatley. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J. Biomed. Mater. Res. A. 71:191–200, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Donati, I., Y. A. Mørch, B. L. Strand, G. Skjåk-Braek, and S. Paoletti. Effect of elongation of alternating sequences on swelling behavior and large deformation properties of natural alginate gels. J. Phys. Chem. B. 113:12916–12922, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Dong, F. L., L. Ma, S. L. Shi, S. J. Dai, X. G. Liu, Y. C. Su, Y. H. Guo, F. Wang, and Y. P. Sun. An research on the isolation methods of frozen-thawed human ovarian preantral follicles. Int. J. Clin. Exp. Med. 7:2298–2303, 2014.

    PubMed  PubMed Central  Google Scholar 

  32. Donnez, J., and M. M. Dolmans. Fertility preservation in women. Nat. Rev. Endocrinol. 9:735–749, 2013.

    Article  CAS  PubMed  Google Scholar 

  33. Draget, K. I., G. Skjåk Bræk, and O. Smidsrød. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr. Polym. 25:31–38, 1994.

    Article  CAS  Google Scholar 

  34. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351, 2003.

    Article  CAS  PubMed  Google Scholar 

  35. Eppig, J. J., and M. J. O’Brien. Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54:197–207, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Evron, A., Z. Blumenfeld, and E. Y. Adashi. The role of growth factors in ovarian function and development. Glob. Libr. Women’s Med., (ISSN: 1756-2228) 2015; DOI 10.3843/GLOWM.10288.

  37. Filicori, M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil. Steril. 71:405–414, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Fisher, T. E., T. A. Molskness, A. Villeda, M. B. Zelinski, R. L. Stouffer, and J. Xu. Vascular endothelial growth factor and angiopoietin production by primate follicles during culture is a function of growth rate, gonadotrophin exposure and oxygen milieu. Hum. Reprod. 28:3263–3270, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fonseca, K. B., S. J. Bidarra, M. J. Oliveira, P. L. Granja, and C. C. Barrias. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater. 7:1674–1682, 2011.

    Article  CAS  PubMed  Google Scholar 

  40. Formo, K., C. H. Cho, L. Vallier, and B. L. Strand. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J. Biomed. Mater. Res. A 103:3717–3726, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Gigli, I., D. D. Byrd, and J. E. Fortune. Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles in vitro. Theriogenology 66:344–353, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, P. S. P., H. S. Ramesh, B. M. Manjunatha, S. Nandi, and J. P. Ravindra. Production of buffalo embryos using oocytes from in vitro grown preantral follicles. Zygote 16:57–63, 2008.

    Article  CAS  PubMed  Google Scholar 

  43. Gutierrez, C. G., J. H. Ralph, E. E. Telfer, I. Wilmut, and R. Webb. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol. Reprod. 62:1322–1328, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Harris, S. E., H. J. Leese, R. G. Gosden, and H. M. Picton. Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol. Reprod. Dev. 76:231–238, 2009.

    Article  CAS  PubMed  Google Scholar 

  45. Haug, A., and B. Larsen. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand. 16:1908–1918, 1962.

    Article  CAS  Google Scholar 

  46. Haug, A., B. Larsen, and O. Smidsrod. Studies of the sequence of uronic acid residues in alginic acid. Acta Chem. Scand. 21:691–704, 1967.

    Article  CAS  Google Scholar 

  47. Haug, A., and O. Smidsrod. Strontium-calcium selectivity of alginates. Nature 215:757, 1967.

    Article  CAS  PubMed  Google Scholar 

  48. Heise, M., R. Koepsel, A. J. Russell, and E. A. McGee. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod. Biol. Endocrinol. 3:47, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hemamalini, N. C., B. S. Rao, G. Tamilmani, D. Amarnath, R. Vagdevi, K. S. Naidu, K. K. Reddy, and V. H. Rao. Influence of transforming growth factor-α, insulin-like growth factor-II, epidermal growth factor or follicle stimulating hormone on in vitro development of preantral follicles in sheep. Small Rumin. Res. 50:11–22, 2003.

    Article  Google Scholar 

  50. Hirao, Y., T. Nagai, M. Kubo, T. Miyano, M. Miyake, and S. Kato. In vitro growth and maturation of pig oocytes. J. Reprod. Fertil. 100:333–339, 1994.

    Article  CAS  PubMed  Google Scholar 

  51. Hornick, J. E., F. E. Duncan, L. D. Shea, and T. K. Woodruff. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum. Reprod. 27:1801–1810, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hornick, J. E., F. E. Duncan, L. D. Shea, and T. K. Woodruff. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145:19–32, 2013.

    Article  CAS  PubMed  Google Scholar 

  53. Irving-Rodgers, H. F., and R. J. Rodgers. Extracellular matrix of the developing ovarian follicle. Semin. Reprod. Med. 24:195–203, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Itoh, T., M. Kacchi, H. Abe, Y. Sendai, and H. Hoshi. Growth, antrum formation, and estradiol production of bovine preantral follicles cultured in a serum-free medium. Biol. Reprod. 67:1099–1105, 2002.

    Article  CAS  PubMed  Google Scholar 

  55. Jayasinghe, S. N. Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 138:2215–2223, 2013.

    Article  CAS  PubMed  Google Scholar 

  56. Jewgenow, K. Impact of peptide growth factors on the culture of preantral follicles of domestic cats. Theriogenology 45:889–895, 1998.

    Article  Google Scholar 

  57. Ji, L., J. J. de Pablo, and S. P. Palecek. Cryopreservation of adherent human embryonic stem cells. Biotechnol. Bioeng. 88:299–312, 2004.

    Article  CAS  PubMed  Google Scholar 

  58. Jiao, Z. X., and T. K. Woodruff. Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body. Fertil. Steril. 99:1453–1459, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin, S. Y., L. Lei, A. Shikanov, L. D. Shea, and T. K. Woodruff. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93:2633–2639, 2010.

    Article  PubMed  Google Scholar 

  60. Kreeger, P. K., J. W. Deck, T. K. Woodruff, and L. D. Shea. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27:714–723, 2006.

    Article  CAS  PubMed  Google Scholar 

  61. Kreeger, P. K., N. N. Fernandes, T. K. Woodruff, and L. D. Shea. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol. Reprod. 73:942–950, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kreeger, P. K., T. K. Woodruff, and L. D. Shea. Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix. Mol. Cell Endocrinol. 205:1–10, 2003.

    Article  CAS  PubMed  Google Scholar 

  63. Laronda, M. M., F. E. Duncan, J. E. Hornick, M. Xu, J. E. Pahnke, K. A. Whelan, L. D. Shea, and T. K. Woodruff. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J. Assist. Reprod. Genet. 31:1013–1028, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101:1869–1879, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Lenie, S., R. Cortvrindt, U. Eichenlaub-Ritter, and J. Smitz. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res. 651:71–81, 2008.

    Article  CAS  PubMed  Google Scholar 

  66. Mainigi, M. A., T. Ord, and R. M. Schultz. Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system. Biol. Reprod. 85:269–276, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makanji, Y., D. Tagler, J. Pahnke, L. D. Shea, and T. K. Woodruff. Hypoxia-mediated carbohydrate metabolism and transport promote early-stage murine follicle growth and survival. Am. J. Physiol. Endocrinol. Metab. 306:893–903, 2014.

    Article  CAS  Google Scholar 

  68. Merz, C., S. Saller, L. Kunz, J. Xu, R. R. Yeoman, A. Y. Ting, M. S. Lawson, R. L. Stouffer, J. D. Hennebold, F. Pau, G. A. Dissen, S. R. Ojeda, M. B. Zelinski, and A. Mayerhofer. Expression of the beta-2 adrenergic receptor (ADRB-2) in human and monkey ovarian follicles: a marker of growing follicles? J. Ovarian Res. 7:8, 2015.

    Article  CAS  Google Scholar 

  69. Nagashima, J., D. E. Wildt, A. J. Travis, and N. Songsasen. Follicular size and stage and gonadotropin concentration affect alginate-encapsulated in vitro growth and survival of pre- and early antral dog follicles. Reprod. Fertil. Dev. 2015. doi:10.1071/RD15004.

    PubMed  Google Scholar 

  70. Ouwerx, C., N. Velings, M. M. Mestdagh, and M. A. V. Axelos. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gel Netw. 6:393–408, 1998.

    Article  CAS  Google Scholar 

  71. Pangas, S. A., H. Saudye, L. D. Shea, and T. K. Woodruff. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 9:1013–1021, 2003.

    Article  CAS  PubMed  Google Scholar 

  72. Park, K. E., Y. Y. Kim, S. Y. Ku, S. M. Baek, Y. Huh, Y. J. Kim, S. H. Kim, Y. M. Choi, and S. Y. Moon. Effects of alginate hydrogels on in vitro maturation outcome of mouse preantral follicles. Tissue Eng. Regen. Med. 9:170–174, 2012.

    Article  CAS  Google Scholar 

  73. Peretz, J., Z. R. Craig, and J. A. Flaws. Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biol. Reprod. 87:63, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pessoa, A. F. C., R. M. P. Rocha, I. R. Brito, G. M. Silva, R. N. Chaves, D. M. Magalhães-Padilha, C. C. Campello, A. P. R. Rodrigues, D. C. S. Nunes-Pinheiro, and J. R. Figueiredo. Effect of morphological integrity, period, and type of culture system on the in vitro development of isolated caprine preantral follicles. Theriogenology 82:312–317, 2014.

    Article  CAS  PubMed  Google Scholar 

  75. Picton, H. M., and R. G. Gosden. In vitro growth of human primordial follicles from frozen-banked ovarian tissue. Mol. Cell. Endocrinol. 166:27–35, 2000.

    Article  CAS  PubMed  Google Scholar 

  76. Rodrigues, J. K., P. A. Navarro, M. B. Zelinski, R. L. Stouffer, and J. Xu. Direct actions of androgens on the survival, growth and secretion of steroids and anti-Müllerian hormone by individual macaque follicles during three-dimensional culture. Hum. Reprod. 30:664–674, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rossetto, R., M. V. A. Saraiva, M. P. Bernuci, G. M. Silva, I. R. Brito, A. M. C. V. Alves, D. M. Magalhães-Padilha, S. N. Báo, C. C. Campello, A. P. R. Rodrigues, and J. R. Figueiredo. Impact of insulin concentration and mode of FSH addition on the in vitro survival and development of isolated bovine preantral follicles. Theriogenology 86:1137–1145, 2016.

    Article  CAS  PubMed  Google Scholar 

  78. Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53, 1999.

    Article  CAS  PubMed  Google Scholar 

  79. Rowley, J. A., and D. J. Mooney. Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60:217–223, 2002.

    Article  CAS  PubMed  Google Scholar 

  80. Roy, S. K., and G. S. Greenwald. Methods of separation and in vitro culture of pre-antral follicles from mammalian ovaries. Hum. Reprod. Update 2:236–245, 1996.

    Article  CAS  PubMed  Google Scholar 

  81. Roy, S. K., and G. S. Greenwald. In vitro effects of follicle-stimulating hormone, luteinizing hormone and prolactine on follicular deoxyribonucleic acid synthesis in the hamster. Endocrinology 122:952–958, 1998.

    Article  Google Scholar 

  82. Roy, S. K., and B. J. Treacy. Isolation and long-term culture of human preantral follicles. Fertil. Steril. 59:783–790, 1993.

    Article  CAS  PubMed  Google Scholar 

  83. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697–715, 1996.

    Article  CAS  PubMed  Google Scholar 

  84. Sadeghnia, S., M. M. Akhondi, G. Hossein, S. Mobini, L. Hosseini, M. M. Naderi, S. B. Boroujeni, A. Sarvari, B. Behzadi, and A. Shirazi. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples. Cryobiology 72:100–105, 2016.

    Article  CAS  PubMed  Google Scholar 

  85. Sadr, S. Z., B. Ebrahimi, M. Shahhoseini, R. Fatehi, and R. Favaedi. Mouse preantral follicle development in two-dimensional and three-dimensional culture systems after ovarian tissue vitrification. Eur. J. Obstet. Gynecol. Reprod. Biol. 194:206–211, 2015.

    Article  PubMed  Google Scholar 

  86. Sandvig, I., K. Karstensen, A. M. Rokstad, F. L. Aachmann, K. Formo, A. Sandvig, G. Skjåk-Bræk, and B. L. Strand. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J. Biomed. Mater. Res. A. 103:896–906, 2015.

    Article  PubMed  CAS  Google Scholar 

  87. Serra, M., C. Correia, R. Malpique, C. Brito, J. Jensen, P. Bjorquist, M. J. Carrondo, and P. M. Alves. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS ONE 6:e23212, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sharma, G. T., P. K. Dubey, and S. K. Meur. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system. Anim. Reprod. Sci. 114:115–124, 2009.

    Article  CAS  PubMed  Google Scholar 

  89. Shaw, J. M., S. L. Cox, A. O. Trounson, and G. Jenkin. Evaluation of the long-term function of cryopreserved ovarian grafts in the mouse, implications for human applications. Mol. Cell. Endocrinol. 161:103–110, 2000.

    Article  CAS  PubMed  Google Scholar 

  90. Shikanov, A., M. Xu, T. K. Woodruff and L. D. Shea. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system. J. Vis. Exp. 49, 2011.

  91. Shikanov, A., M. Xu, T. K. Woodruff, and L. D. Shea. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476–5485, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Silva, G. M., R. Rossetto, R. N. Chaves, A. B. G. Duarte, V. R. Araújo, C. Feltrin, M. P. Bernuci, J. A. Anselmo-Franci, M. Xu, T. K. Woodruff, C. C. Campello, and J. R. Figueiredo. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote 23:475–484, 2015.

    Article  CAS  PubMed  Google Scholar 

  93. Singelyn, J. M., P. Sundaramurthy, T. D. Johnson, P. J. Schup-Magoffin, D. P. Hu, D. M. Faulk, J. Wang, K. M. Mayle, K. Bartels, M. Salvatore, A. M. Kinsey, A. N. Demaria, N. Dib, and K. L. Christman. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59:751–763, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Skory, R. M., Y. Xu, L. D. Shea, and T. K. Woodruff. Engineering the ovarain cylce unsing in vitro follicle culture. Hum. Reprod. 30:1386–1395, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Songsasen, N., P. Comizzoli, J. Nagashima, M. Fujihara, and D. E. Wildt. The domestic dog and cat as models for understanding the regulation of ovarian follicle development in vitro. Reprod. Domest. Anim. 47:13–18, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Songsasen, N., C. Guzy, and D. E. Wildt. Alginate-fibrin gel matrix promotes in vitro growth of dog secondary follicles. Reprod. Fertil. Dev. 24:173, 2011.

    Article  Google Scholar 

  97. Songsasen, N., T. K. Woodruff, and D. E. Wildt. In vitro growth and steroidogenesis of dog follicles as influenced by the physical and hormonal microenvironment. Reproduction 142:113–122, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, J., and X. Li. Growth and antrum formation of bovine primary follicles in long-term culture in vitro. Reprod. Biol. 13:221–228, 2013.

    Article  PubMed  Google Scholar 

  99. Tagler, D., Y. Makanji, N. R. Anderson, T. K. Woodruff, and L. D. Shea. Supplemented αMEM/F12-based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol. Bioeng. 110:3258–3268, 2012.

    Article  CAS  Google Scholar 

  100. Tagler, D., Y. Makanji, T. Tu, B. P. Bernabé, R. Lee, J. Zhu, E. Kniazeva, J. E. Hornick, T. K. Woodruff, and L. D. Shea. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol. Bioeng. 111:1417–1429, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tagler, D., T. Tu, R. M. Smith, N. R. Anderson, C. M. Tingen, T. K. Woodruff, and L. D. Shea. Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng. A 18:1229–1238, 2012.

    Article  CAS  Google Scholar 

  102. Tambe, S. S., and T. D. Nandedkar. Steroidogenesis in sheep ovarian antral follicles in culture: time course study and supplementation with a precursor. Steroids 58:379–383, 1993.

    Article  CAS  PubMed  Google Scholar 

  103. Telfer, E. E., and M. B. Zelinski. Ovarian Follicle Culture: Advances and Challenges for Human and Non-human Primates. Fertil. Steril. 99:1523–1533, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ting, A. Y., J. Xu, and R. L. Stouffer. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum. Reprod. 30:1907–1917, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ting, A. Y., R. R. Yeoman, J. R. Campos, M. S. Lawson, S. F. Mullen, G. M. Fahy, and M. B. Zelinski. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum. Reprod. 28:1267–1279, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ting, A. Y., R. R. Yeoman, M. S. Lawson, and M. B. Zelinski. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum. Reprod. 26:2461–2472, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ting, A. Y., R. R. Yeoman, M. S. Lawson, and M. B. Zelinski. Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles. Cryobiology 65:1–11, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tingen, C. M., S. E. Kiesewetter, J. Jozefik, C. Thomas, D. Tagler, L. Shea, and T. K. Woodruff. A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro. Reproduction 141:809–820, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Townsend-Nicholson, A., and S. N. Jayasinghe. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7:3364–3369, 2006.

    Article  CAS  PubMed  Google Scholar 

  110. Vanacker, J., A. Camboni, C. Dath, A. Van Langendonckt, M. M. Dolmans, J. Donnez, and C. A. Amorim. Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil. Steril. 96:379–383, 2011.

    Article  CAS  PubMed  Google Scholar 

  111. Vanacker, J., M. M. Dolmans, V. Luyckx, J. Donnez, and C. A. Amorim. First transplantation of isolated murine follicles in alginate. Regen. Med. 9:609–619, 2014.

    Article  CAS  PubMed  Google Scholar 

  112. Vanacker, J., V. Luyckx, C. Amorim, M. M. Dolmans, A. Van Langendonckt, J. Donnez, and A. Camboni. Should we isolate human preantral follicles before or after cryopreservation of ovarian tissue? Fertil. Steril. 99:1363–1368, 2013.

    Article  PubMed  Google Scholar 

  113. Vanacker, J., V. Luyckx, M. M. Dolmans, A. Des Rieux, J. Jaeger, A. Van Langendonckt, J. Donnez, and C. A. Amorim. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 33:6079–6085, 2012.

    Article  CAS  PubMed  Google Scholar 

  114. Vegetti, W., and F. Alagna. FSH and folliculogenesis: from physiology to ovarian stimulation. Reprod. Biomed. 12:684–694, 2006.

    Article  CAS  Google Scholar 

  115. Vilela, J. M. V., E. C. R. Leonel, L. D’Oliveira, R. E. G. Paiva, A. L. Miranda-Vilela, C. A. Amorim, A. Pic-Taylor, and C. M. Lucci. Culture of domestic cat ovarian tissue in vitro and in the chick embryo chorioallantoic membrane. Theriogenology 86:1774–1781, 2016.

    Article  CAS  PubMed  Google Scholar 

  116. Viswanath, A., J. Vanacker, L. Germain, J. G. Leprince, A. Diogenes, K. M. Shakesheff, L. J. White and A. des Rieux. Extracellular matrix-derived hydrogels for dental stem cell delivery. J. Biomed. Mater. Res. A. 105: 319-328, 2017.

  117. Wang, R. M., and K. L. Christman. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Adv. Drug Deliv. Rev. 96:77–82, 2016.

    Article  PubMed  CAS  Google Scholar 

  118. Wang, T., J. Yan, C. Lu, X. Xia, T. Yin, X. Zhi, X. Zhu, T. Ding, W. Hu, H. Guo, R. Li, L. Yan, and J. Qiao. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification. Hum. Reprod. 31:763–773, 2016.

    Article  PubMed  Google Scholar 

  119. Wang, T. R., L. Y. Yan, J. Yan, C. L. Lu, X. Xia, T. L. Yin, X. H. Zhu, J. M. Gao, T. Ding, W. H. Hu, H. Y. Guo, R. Li, and J. Qiao. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Hum. Reprod. 29:568–576, 2014.

    Article  CAS  PubMed  Google Scholar 

  120. West, E. R., L. D. Shea, and T. K. Woodruff. Engineering the follicle microenvironment. Semin. Reprod. Med. 25:287–299, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. West, E. R., M. Xu, T. K. Woodruff, and L. D. Shea. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28:4439–4448, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. West-Farrell, E. R., M. Xu, M. A. Gomberg, Y. H. Chow, T. K. Woodruff, and L. D. Shea. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol. Reprod. 80:432–439, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xiao, S., F. E. Duncan, L. Bai, C. T. Nguyen, L. D. Shea, and T. K. Woodruff. Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction 150:183–192, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu, M., A. Banc, T. K. Woodruff, and L. D. Shea. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 103:378–386, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, M., S. L. Barrett, E. West-Farrell, L. A. Kondapalli, S. E. Kiesewetter, L. D. Shea, and T. K. Woodruff. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 24:2531–2540, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu, J., M. P. Bernuci, M. S. Lawson, R. R. Yeoman, T. E. Fisher, M. B. Zelinski, and R. L. Stouffer. Survival, growth, and maturation of secondary follicles from prepubertal, young, and older adult rhesus monkeys during encapsulated three-dimensional culture: effects of gonadotropins and insulin. Reproduction 140:685–697, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu, M., A. T. Fazleabas, A. Shikanov, E. Jackson, S. L. Barrett, J. Hirshfeld-Cytron, S. E. Kiesewetter, L. D. Shea, and T. K. Woodruff. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol. Reprod. 84:689–697, 2011.

    Article  CAS  PubMed  Google Scholar 

  128. Xu, J., J. D. Hennebold and D. B. Seifer. Direct vitamin D3 actions on rhesus macaque follicles in three-dimensional culture: assessment of follicle survival, growth, steroid, and antimüllerian hormone production. Fertil. Steril. 106:1815-1820.e1, 2016.

  129. Xu, M., P. K. Kreeger, L. D. Shea, and T. K. Woodruff. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12:2739–2746, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu, J., M. S. Lawson, R. R. Yeoman, T. A. Molskness, A. Y. Ting, R. L. Stouffer, and M. B. Zelinski. Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum. Reprod. 28:2187–2200, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu, J., M. S. Lawson, R. R. Yeoman, K. Y. Pau, S. L. Barrett, M. B. Zelinski, and R. L. Stouffer. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum. Reprod. 26:1061–1072, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu, J., W. K. McGee, C. V. Bishop, B. S. Park, J. L. Cameron, M. B. Zelinski, and R. L. Stouffer. Exposure of female macaques to western-style diet with or without chronic T in vivo alters secondary follicle function during encapsulated 3-dimensional culture. Endocrinology 156:1133–1142, 2015.

    Article  CAS  PubMed  Google Scholar 

  133. Xu, M., E. West, L. S. Shea, and T. K. Woodruff. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol. Reprod. 75:916–923, 2006.

    Article  CAS  PubMed  Google Scholar 

  134. Xu, M., E. R. West-Farrell, R. L. Stouffer, L. D. Shea, T. K. Woodruff, and M. B. Zelinski. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81:587–594, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamamoto, K., T. Otoi, N. Koyama, N. Horikita, S. Tachikawa, and T. Miyano. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology 52:81–89, 1999.

    Article  CAS  PubMed  Google Scholar 

  136. Yin, H., S. G. Kristensen, H. Jiang, A. Rasmussen, and C. Y. Andersen. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum. Reprod. 31:1531–1539, 2016.

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, H., M. A. Malik, A. Arab, M. T. Hill, and A. Shikanov. Hydrogel based 3-dimensional (3D) system for toxicity and high-throughput (HTP) analysis for cultured murine ovarian follicles. PLoS ONE 10:e0140205, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

J. Vanacker is an FRS-FNRS postdoctoral researcher and C.A. Amorim is an FRS-FNRS research associate. The authors thank Mira Hryniuk, BA, for reviewing the English language of the manuscript.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie Vanacker or Christiani A. Amorim.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanacker, J., Amorim, C.A. Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 45, 1633–1649 (2017). https://doi.org/10.1007/s10439-017-1816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1816-6

Keywords

Navigation