Skip to main content
Log in

Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Allen, J. L., and R. R. Neptune. Three-dimensional modular control of human walking. J. Biomech. 45:2157–2163, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ambrosini, E., C. De Marchis, A. Pedrocchi, G. Ferrigno, M. Monticone, M. Schmid, T. D’Alessio, S. Conforto, and S. Ferrante. Neuro-Mechanics of Recumbent Leg Cycling in Post-Acute Stroke Patients. Ann. Biomed. Eng. 44:3238–3251, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bizzi, E., and V. C. K. Cheung. The neural origin of muscle synergies. Front. Comput. Neurosci. 7:51, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burden, A., M. Trew, and V. Baltzopoulos. Normalisation of gait EMGs: A re-examination. J. Electromyogr. Kinesiol. 13:519–532, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Bussmann, J. B., W. L. Martens, J. H. Tulen, F. C. Schasfoort, H. J. van den Berg-Emons, and H. J. Stam. Measuring daily behavior using ambulatory accelerometry: the Activity Monitor. Behav. Res. Methods. Instrum. Comput. 33:349–356, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Campanini, I., A. Merlo, P. Degola, R. Merletti, G. Vezzosi, and D. Farina. Effect of electrode location on EMG signal envelope in leg muscles during gait. J. Electromyogr. Kinesiol. 17:515–526, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Cappellini, G., Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti. Motor patterns in human walking and running. J. Neurophysiol. 95:3426–3437, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, V. C. K., A. d’Avella, and E. Bizzi. Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J. Neurophysiol. 101:1235–1257, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheung, V. C. K., A. d’Avella, M. C. Tresch, and E. Bizzi. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25:6419–6434, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Cheung, V. C. K., A. Turolla, M. Agostini, S. Silvoni, C. Bennis, P. Kasi, S. Paganoni, P. Bonato, and E. Bizzi. Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. 109:14652–14656, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chia Bejarano, N. E. Ambrosini, A. Pedrocchi, G. Ferrigno, M. Monticone, and S. Ferrante. A Novel Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 23:413–422, 2015.

    Article  PubMed  Google Scholar 

  12. Chvatal, S. A., and L. H. Ting. Common muscle synergies for balance and walking. Front. Comput. Neurosci. 7:48, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clark, D. J., L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103:844–857, 2010.

    Article  PubMed  Google Scholar 

  14. Courtine, G., C. Papaxanthis, and M. Schieppati. Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Exp. Brain Res. 170:320–335, 2006.

    Article  PubMed  Google Scholar 

  15. Courtine, G., and M. Schieppati. Human walking along a curved path. II. Gait features and EMG patterns. Eur. J. Neurosci. 18:191–205, 2003.

    Article  PubMed  Google Scholar 

  16. Courtine, G., and M. Schieppati. Tuning of a Basic Coordination Pattern Constructs Straight-Ahead and Curved Walking in Humans. J. Neurophysiol. 91:1524–1535, 2004.

    Article  PubMed  Google Scholar 

  17. Dominici, N., Y. P. Ivanenko, G. Cappellini, A. D’Avella, V. Mondì, M. Cicchese, A. Fabiano, T. Silei, A. Di Paolo, C. Giannini, R. E. Poppele, and F. Lacquaniti. Locomotor primitives in newborn babies and their development. Science 334:997–999, 2011.

    Article  CAS  PubMed  Google Scholar 

  18. Duval, K., K. Luttin, and T. Lam. Neuromuscular strategies in the paretic leg during curved walking in individuals post-stroke. J. Neurophysiol. 106:280–290, 2011.

    Article  PubMed  Google Scholar 

  19. Ferrante, S., and N. Chia. Bejarano, E. Ambrosini, A. Nardone, A. M. Turcato, M. Monticone, G. Ferrigno, and A. Pedrocchi. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke. Front. Neurosci. 10:425, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gizzi, L., J. F. Nielsen, F. Felici, Y. P. Ivanenko, and D. Farina. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol. 106:202–210, 2011.

    Article  PubMed  Google Scholar 

  21. Glaister, B. C., G. C. Bernatz, G. K. Klute, and M. S. Orendurff. Video task analysis of turning during activities of daily living. Gait Posture 25:289–294, 2007.

    Article  PubMed  Google Scholar 

  22. Godi, M., A. Nardone, and M. Schieppati. Curved walking in hemiparetic patients. J. Rehabil. Med. 42:858–865, 2010.

    Article  PubMed  Google Scholar 

  23. Godi, M., A. M. Turcato, M. Schieppati, and A. Nardone. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories. J. Neuroengineering Rehabil. 11:95, 2014.

    Article  Google Scholar 

  24. Guglielmetti, S., A. Nardone, A. M. De Nunzio, M. Godi, and M. Schieppati. Walking along circular trajectories in Parkinson’s disease. Mov. Disord. 24:598–604, 2009.

    Article  PubMed  Google Scholar 

  25. Hayes, H. B., S. A. Chvatal, M. A. French, L. H. Ting, and R. D. Trumbower. Neuromuscular constraints on muscle coordination during overground walking in persons with chronic incomplete spinal cord injury. Clin. Neurophysiol. 125:2024–2035, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hershler, C., and M. Milner. An Optimality Criterion for Processing Electromyographic (EMG) Signals Relating to Human Locomotion. IEEE Trans. Biomed. Eng. 25:413–420, 1978.

    Article  CAS  PubMed  Google Scholar 

  27. Honeine, J.-L., M. Schieppati, O. Gagey, and M.-C. Do. By counteracting gravity, triceps surae sets both kinematics and kinetics of gait. Physiol. Rep. 2:e00229, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hug, F., N. A. Turpin, A. Couturier, and S. Dorel. Consistency of muscle synergies during pedaling across different mechanical constraints. J. Neurophysiol. 106:91–103, 2011.

    Article  PubMed  Google Scholar 

  29. Ivanenko, Y. P., G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti. Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25:7238–7253, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Ivanenko, Y. P., R. E. Poppele, and F. Lacquaniti. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556:267–282, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, D. D., and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Lowry, K. A., J. S. Brach, R. D. Nebes, S. A. Studenski, and J. M. VanSwearingen. Contributions of Cognitive Function to Straight- and Curved-Path Walking in Older Adults. Arch. Phys. Med. Rehabil. 93:802–807, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McGowan, C. P., R. R. Neptune, D. J. Clark, and S. A. Kautz. Modular control of human walking: Adaptations to altered mechanical demands. J. Biomech. 43:412–419, 2010.

    Article  PubMed  Google Scholar 

  34. Monaco, V., A. Ghionzoli, and S. Micera. Age-related modifications of muscle synergies and spinal cord activity during locomotion. J. Neurophysiol. 104:2092–2102, 2010.

    Article  PubMed  Google Scholar 

  35. Muceli, S., A. T. Boye, A. D’Avella, and D. Farina. Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol. 103:1532–1542, 2010.

    Article  PubMed  Google Scholar 

  36. Oliveira, A. S., L. Gizzi, D. Farina, and U. G. Kersting. Motor modules of human locomotion: influence of EMG averaging, concatenation, and number of step cycles. Front. Hum. Neurosci. 8:335, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pirondini, E., M. Coscia, A. Crema, M. Mancuso, and S. Micera. How the selection of muscles influences their synergies? A preliminary study using real data. In: 6th International IEEE/EMBS Conference on Neural Engineering (NER) (IEEE), 2013, pp. 581–584.

  38. Rosenblatt, N. J., and M. D. Grabiner. Measures of frontal plane stability during treadmill and overground walking. Gait Posture 31:380–384, 2010.

    Article  PubMed  Google Scholar 

  39. Routson, R. L., S. A. Kautz, and R. R. Neptune. Modular organization across changing task demands in healthy and poststroke gait. Physiol. Rep. 2:e12055, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sawers, A., J. L. Allen, and L. H. Ting. Long-term training modifies the modular structure and organization of walking balance control. J. Neurophysiol. 114:3359–3373, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shiavi, R., C. Frigo, and A. Pedotti. Electromyographic signals during gait: Criteria for envelope filtering and number of strides. Med. Biol. Eng. Comput. 36:171–178, 1998.

    Article  CAS  PubMed  Google Scholar 

  42. Sozzi, S., J.-L. Honeine, M.-C. Do, and M. Schieppati. Leg muscle activity during tandem stance and the control of body balance in the frontal plane. Clin. Neurophysiol. 124:1175–1186, 2013.

    Article  PubMed  Google Scholar 

  43. Ting, L. H., H. J. Chiel, R. D. Trumbower, J. L. Allen, J. L. McKay, M. E. Hackney, and T. M. Kesar. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86:38–54, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turcato, A., M. Godi, A. Giordano, M. Schieppati, and A. Nardone. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles. J. Neuroeng. Rehabil. 12:4, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Ministry of Education, University and Research (Grant No. 2010R277FT) and the Italian Ministry of Health (Grant No. GR-2010-2312228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Chia Bejarano.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chia Bejarano, N., Pedrocchi, A., Nardone, A. et al. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans. Ann Biomed Eng 45, 1204–1218 (2017). https://doi.org/10.1007/s10439-017-1802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1802-z

Keywords

Navigation