Skip to main content

Advertisement

Log in

Strength and Persistence of Energy-Based Vessel Seals Rely on Tissue Water and Glycosaminoglycan Content

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vessel ligation using energy-based surgical devices is steadily replacing conventional closure methods during minimally invasive and open procedures. In exploring the molecular nature of thermally-induced tissue bonds, novel applications for surgical resection and repair may be revealed. This work presents an analysis of the influence of unbound water and hydrophilic glycosaminoglycans on the formation and resilience of vascular seals via: (a) changes in pre-fusion tissue hydration, (b) the enzymatic digestion of glycosaminoglycans (GAGs) prior to fusion and (c) the rehydration of vascular seals following fusion. An 11% increase in pre-fusion unbound water led to an 84% rise in vascular seal strength. The digestion of GAGs prior to fusion led to increases of up to 82% in seal strength, while the rehydration of native and GAG-digested vascular seals decreased strengths by 41 and 44%, respectively. The effects of increased unbound water content prior to fusion combined with the effects of seal rehydration after fusion suggest that the heat-induced displacement of tissue water is a major contributor to tissue adhesion during energy-based vessel sealing. The effects of pre-fusion GAG-digestion on seal integrity indicate that GAGs are inhibitory to the bond formation process during thermal ligation. GAG digestion may allow for increased water transport and protein interaction during the fusion process, leading to the formation of stronger bonds. These findings provide insight into the physiochemical nature of the fusion bond, its potential for optimization in vascular closure and its application to novel strategies for vascular resection and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alimova, A., R. Chakraverty, R. Muthukattil, S. Elder, A. Katz, V. Sriramoju, S. Lipper, and R. R. Alfano. In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy. J. Photochem. Photobiol. B 96:178–183, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arya, S., N. Hadjievangelou, S. Lei, H. Kudo, R. D. Goldin, A. W. Darzi, D. S. Elson, and G. B. Hanna. Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities. Surg. Endosc. 27:3485–3496, 2013.

    Article  PubMed  Google Scholar 

  3. Barbosa, I. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Bass, L. S., N. Moazami, J. Pocsidio, M. C. Oz, P. Logerfo, and M. R. Treat. Changes in type I collagen following laser welding. Lasers Surg. Med. 12:500–505, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Burt, J. D., M. Siddins, and W. Morrison. Laser photoirradiation in digital flexor tendon repair. Plast. Reconstr. Surg. 108:688–694, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Cezo, J. D., E. A. Kramer, J. A. Schoen, V. L. Ferguson, K. D. Taylor, and M. E. Rentschler. Tissue storage ex vivo significantly increases vascular fusion bursting pressure. Surg. Endosc. 2015. doi:10.1007/s00464-014-3900-4.

    PubMed  Google Scholar 

  7. Cezo, J. D., E. A. Kramer, K. D. Taylor, V. L. Ferguson, and M. E. Rentschler. Tissue fusion bursting pressure and the role of tissue water content. In: Ryan, T. P (Ed.), Proc. SPIE 8584, Energy-based treatment of tissue and assessment VII, 85840M, vol 8584. SPIE Proceedings, 2013. doi:10.1117/12.2002184.

  8. Cezo, J. D., E. Kramer, K. D. Taylor, V. Ferguson, and M. E. Rentschler. Temperature measurement methods during direct heat arterial tissue fusion. IEEE Trans. Biomed. Eng. 60:2552–2558, 2013.

    Article  PubMed  Google Scholar 

  9. Cezo, J. D., A. C. Passernig, V. L. Ferguson, K. D. Taylor, and M. E. Rentschler. Evaluating temperature and duration in arterial tissue fusion to maximize bond strength. J. Mech. Behav. Biomed. Mater. 30:41–49, 2014.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, R. K., M. W. Chastagner, J. D. Geiger, and A. J. Shih. Bipolar electrosurgical vessel-sealing device with compressive force monitoring. J. Biomech. Eng. 136:061001, 2014.

    Article  PubMed  Google Scholar 

  11. Cilesiz, I. Controlled temperature photothermal tissue welding. J. Biomed. Opt. 4(3):327–336, 1999.

    Article  CAS  Google Scholar 

  12. Entezari, K., P. Hoffmann, M. Goris, A. Peltier, and R. Van Velthoven. A review of currently available vessel sealing systems. Minim. Invasive Ther. Allied Technol. 16(1):52–57, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta. 883(2):173–177, 1986.

    Article  CAS  PubMed  Google Scholar 

  14. Fenner, J. W., W. Martin, H. Moseley, and D. J. Wheatley. Dehydration: a model for (low-temperature) argon laser tissue bonding. Phys. Med. Biol. 39:2147–2160, 1994.

    Article  CAS  PubMed  Google Scholar 

  15. Figueiredo, R. L. P., M. S. S. Dantas, and R. L. Oréfice. Thermal welding of biological tissues derived from porcine aorta for manufacturing bioprosthetic cardiac valves. Biotechnol. Lett. 33:1699–1703, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Floume, T., R. R. A. Syms, A. W. Darzi, and G. B. Hanna. Optical, thermal, and electrical monitoring of radio-frequency tissue modification. J. Biomed. Opt. 15:018003, 2010.

    Article  PubMed  Google Scholar 

  17. Guthrie, C. R., L. W. Murray, G. E. Kopchok, D. Rosenbaum, and R. A. White. Biochemical mechanisms of laser vascular tissue fusion. J. Invest. Surg. 4(1):3–12, 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Harold, K. L., H. Pollinger, B. D. Matthews, K. W. Kercher, R. F. Sing, and B. T. Heniford. Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries. Surg. Endosc. 17:1228–1230, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Henninger, H. B., C. J. Underwood, G. A. Ateshian, and J. A. Weiss. Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament. J. Biomech. 43:2567–2573, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu, L., Z. Lu, B. Wang, J. Cao, X. Ma, Z. Tian, Z. Gao, et al. Closure of skin incisions by laser-welding with a combination of two near-infrared diode lasers: preliminary study for determination of optimal parameters. J. Biomed. Opt. 16:038001, 2011.

    Article  PubMed  Google Scholar 

  21. Ishii-Nozawa, R., T. Naito, M. Mita, K. Miyazaki, Y. Matsuda, and K. Takeuchi. Effect of chondroitinase on dermatan sulfate-facilitated arginine amidase released from rabbit ear artery. Biol. Pharm. Bull. 33:150–152, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy, J. S., P. L. Stranahan, K. D. Taylor, and J. G. Chandler. High burst-strength, feedback-controlled bipolar vessel sealing. Surg. Endosc. 12:876–878, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Luescher, M., M. Ruegg, and P. Schindler. Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts. Biopolymers 13:2489–2508, 1974.

    Article  CAS  PubMed  Google Scholar 

  24. Miles, C. A., N. C. Avery, V. V. Rodin, and A. J. Bailey. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J. Mol. Biol. 346:551–556, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Morriss-Kay, G., and F. Tuckett. Immunohistochemical localisation of chondroitin sulphate proteoglycans and the effects of chondroitinase ABC in 9-to 11-day rat embryos. Development 106:787–798, 1989.

    CAS  PubMed  Google Scholar 

  26. Murata, Katsumi, Koji Nakazawa, and Akio Hamai. Distribution of acidic glycosaminoglycans in the intima, media and adventitia of bovine aorta and their anticoagulant properties. Atherosclerosis 21:93–103, 1975.

    Article  CAS  PubMed  Google Scholar 

  27. Murray, L. W., L. Su, G. E. Kopchok, and R. A. White. Crosslinking of extracellular matrix proteins: a preliminary report on a possible mechanism of argon laser welding. Lasers Surg. Med. 9:490–496, 1989.

    Article  CAS  PubMed  Google Scholar 

  28. Newcomb, W. L., W. W. Hope, T. M. Schmelzer, J. J. Heath, H. J. Norton, A. E. Lincourt, B. T. Heniford, and D. A. Iannitti. Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg. Endosc. 23:90–96, 2009.

    Article  PubMed  Google Scholar 

  29. Pearce, J. A., and S. Thomsen. Kinetic models of laser-tissue fusion processes. Biomed. Sci. Instrum. 29:355–360, 1993.

    CAS  PubMed  Google Scholar 

  30. Person, B., D. A. Vivas, D. Ruiz, M. Talcott, J. E. Coad, and S. D. Wexner. Comparison of four energy-based vascular sealing and cutting instruments: a porcine model. Surg. Endosc. 22:534–538, 2008.

    Article  PubMed  Google Scholar 

  31. Ramachandran, G. N., and G. Kartha. Structure of collagen. Nature 174:269–270, 1954.

    Article  CAS  PubMed  Google Scholar 

  32. Schober, R., F. Ulrich, T. Sander, H. Dürselen, and S. Hessel. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science 232:1421–1422, 1986.

    Article  CAS  PubMed  Google Scholar 

  33. Small, W., P. M. Celliers, G. E. Kopchok, K. M. Reiser, N. J. Heredia, D. J. Maitland, D. C. Eder, R. A. London, M. Heilbron, F. Hussain, R. A. White, L. B. Da Silva, and D. L. Matthews. In-vivo argon laser vascular welding using thermal feedback: open- and closed-loop patency and collagen crosslinking. Proc. SPIE 2970, Lasers in surgery: advanced characterization, therapeutics, and systems VII, 252, vol 2970. San Jose, CA, 1997. doi:10.1117/12.275050.

  34. Smith, R., and R. Pasic. The role of vessel sealing technologies in laparoscopic surgery. Surg. Technol. Int. 17:208–212, 2008.

    PubMed  Google Scholar 

  35. Sooklal, V., J. McClure, L. Hooper, and M. Larson. A laser device for fusion of nasal mucosa. Head Neck Oncol. 2:1, 2011.

    Google Scholar 

  36. Sriramoju, V., and R. R. Alfano. Management of heat in laser tissue welding using NIR cover window material. Lasers Surg. Med. 43:991–997, 2011.

    Article  PubMed  Google Scholar 

  37. Sriramoju, V., and R. R. Alfano. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing. J. Biomed. Opt. 20:108001, 2015.

    Article  PubMed  Google Scholar 

  38. Su, L., M. B. Fonseca, S. Arya, H. Kudo, R. Goldin, G. B. Hanna, and D. S. Elson. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization. J. Biomed. Opt. 19(1):15007, 2014. doi:10.1117/1.JBO.19.1.015007.

    Article  PubMed  Google Scholar 

  39. Tang, J., G. Godlewski, S. Rouy, and G. Delacrétaz. Morphologic changes in collagen fibers after 830 nm diode laser welding. Lasers Surg. Med. 21:438–443, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Tang, Jing, David O’Callaghan, Simone Rouy, and Guilhem Godlewski. Quantitative changes in collagen levels following 830-nm diode laser welding. Lasers Surg. Med. 22:207–211, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Wallwiener, C. W., T. K. Rajab, W. Zubke, K. B. Isaacson, M. Enderle, D. Schäller, and M. Wallwiener. Thermal conduction, compression, and electrical current—an evaluation of major parameters of electrosurgical vessel sealing in a porcine in vitro model. J. Minim. Invasive Gynecol. 15:605–610, 2008.

    Article  PubMed  Google Scholar 

  42. Small, W., IV. Thermal and Molecular Investigation of Laser Tissue Welding. Ph.D. Thesis, Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1998.

  43. Weir, C. E. Rate of shrinkage of tendon collagen: heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid, salt, pickle, and tannage of the activation of tendon collagen. J. Am. Leather Chem. Assoc. 44:108, 1949.

    CAS  Google Scholar 

  44. White, R. A., G. Kopchock, C. Donayre, P. Abergel, R. Lyons, and S. R. Klein. Comparison of laser-welded and sutured arteriotomies. Arch. Surg. 121(10):1133–1135, 1986.

    Article  CAS  PubMed  Google Scholar 

  45. White, R. A., G. Kopchok, S.-K. Peng, R. Fujitani, G. White, S. Klein, and J. Uitto. Laser vascular welding—how does it work? Ann. Vasc. Surg. 1:461–464, 1987.

    CAS  PubMed  Google Scholar 

  46. Wright, N. T., and J. D. Humphrey. Denaturation of collagen via heating: an irreversible rate process. Annu. Rev. Biomed. Eng. 4:109–128, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kelli Barnes and Renée Merchel for their time and support during this study.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Kramer.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, E.A., Cezo, J.D., Fankell, D.P. et al. Strength and Persistence of Energy-Based Vessel Seals Rely on Tissue Water and Glycosaminoglycan Content. Ann Biomed Eng 44, 3421–3431 (2016). https://doi.org/10.1007/s10439-016-1657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1657-8

Keywords

Navigation