Skip to main content

Advertisement

Log in

Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

LAM:

Laminin

FN:

Fibronectin

Col I:

Collagen I

Col IV:

Collagen IV

SkMDCs:

Skeletal muscle derived cells

μCP:

Microcontact printed

MFI:

Myotube fusion index (nuclei/myotube)

PDMS:

Polydimethylsiloxane

References

  1. Alford, P. W., A. W. Feinberg, S. P. Sheehy, and K. K. Parker. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alford, P. W., A. P. Nesmith, J. N. Seywerd, A. Grosberg, and K. K. Parker. Vascular smooth muscle contractility depends on cell shape. Integr. Biol. 3:1063–1070, 2011.

    Article  CAS  Google Scholar 

  3. Altomare, L., M. Riehle, N. Gadegaard, M. Tanzi, and S. Fare. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int. J. Artif. Organs 33:535–543, 2010.

    CAS  PubMed  Google Scholar 

  4. Bajaj, P., B. Reddy, Jr, L. Millet, C. Wei, P. Zorlutuna, G. Bao, and R. Bashir. Patterning the differentiation of C2C12 skeletal myoblasts. Integr. Biol. (Camb) 3:897–909, 2011.

    Article  CAS  Google Scholar 

  5. Boonen, K. J. M., and M. J. Post. The muscle stem cell Niche: regulation of satellite cells during regeneration. Tissue Eng. Part B-Rev. 14:419–431, 2008.

    Article  PubMed  Google Scholar 

  6. Boonen, K. J., K. Y. Rosaria-Chak, F. P. Baaijens, D. W. van der Schaft, and M. J. Post. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell Physiol. 296:C1338–1345, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Charge, S. B., and M. A. Rudnicki. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209–238, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, C. S., B. N. Davis, L. Madden, N. Bursac, and G. A. Truskey. Physiology and metabolism of tissue-engineered skeletal muscle. Exp. Biol. Med. (Maywood) 239:1203–1214, 2014.

    Article  Google Scholar 

  9. Dennis, R. G., and P. E. Kosnik, 2nd. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36:327–335, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Duffy, R. M., and A. W. Feinberg. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 6:178–195, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Durbeej, M., J. F. Talts, M. D. Henry, P. D. Yurchenco, K. P. Campbell, and P. Ekblom. Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 69:121–134, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Eberli, D., S. Soker, A. Atala, and J. J. Yoo. Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro. Methods 47:98–103, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnetnann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Feinberg, A. W., P. W. Alford, H. Jin, C. M. Ripplinger, A. A. Werdich, S. P. Sheehy, A. Grosberg, and K. K. Parker. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33:5732–5741, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Feinberg, A. W., and K. K. Parker. Surface-initiated assembly of protein nanofabrics. Nano Lett. 10:2184–2191, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Flaibani, M., L. Boldrin, E. Cimetta, M. Piccoli, P. De Coppi, and N. Elvassore. Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation. Tissue Eng. Part A 15:2447–2457, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Fujita, H., K. Shimizu, and E. Nagamori. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol. Bioeng. 106:482–489, 2010.

    CAS  PubMed  Google Scholar 

  20. Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goudenege, S., Y. Lamarre, N. Dumont, J. Rousseau, J. Frenette, D. Skuk, and J. P. Tremblay. Laminin-111: a potential therapeutic agent for duchenne muscular dystrophy. Mol. Ther. 18:2155–2163, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grosberg, A., P. W. Alford, M. L. McCain, and K. K. Parker. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grounds, M. D., L. Sorokin, and J. White. Strength at the extracellular matrix-muscle interface. Scand. J. Med. Sci. Sports 15:381–391, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Guo, X., K. Greene, N. Akanda, A. Smith, M. Stancescu, S. Lambert, H. Vandenburgh, and J. Hickman. In vitro differentiation of functional human skeletal myotubes in a defined system. Biomater. Sci. 2:131–138, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hald, E. S., K. E. Steucke, J. A. Reeves, Z. Win, and P. W. Alford. Microfluidic genipin deposition technique for extended culture of micropatterned vascular muscular thin films. J. Vis. Exp. 100:e52971, 2015.

    PubMed  Google Scholar 

  26. Hayashi, Y. K., E. Engvall, E. Arikawa-Hirasawa, K. Goto, R. Koga, I. Nonaka, H. Sugita, and K. Arahata. Abnormal localization of laminin subunits in muscular dystrophies. J. Neurol. Sci. 119:53–64, 1993.

    Article  CAS  PubMed  Google Scholar 

  27. Hinds, S., W. N. Bian, R. G. Dennis, and N. Bursac. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32:3575–3583, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jallerat Q., J. M. Szymanski and A. W. Feinberg. Nano- and Microstructured ECM and Biomimetic Scaffolds for Cardiac Tissue Engineering. In: Bio-inspired Materials for Biomedical Engineering. Wiley 2014, pp. 195–226.

  29. Ker, E. D., A. S. Nain, L. E. Weiss, J. Wang, J. Suhan, C. H. Amon, and P. G. Campbell. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Madden, L., M. Juhas, W. E. Kraus, G. A. Truskey, and N. Bursac. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 4:e04885, 2015.

    Article  PubMed  Google Scholar 

  31. Mase, Jr., V. J., J. R. Hsu, S. E. Wolf, J. C. Wenke, D. G. Baer, J. Owens, S. F. Badylak, and T. J. Walters. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33:511, 2010.

    PubMed  Google Scholar 

  32. Nakamura, Y. N., H. Iwamoto, T. Yamaguchi, Y. Ono, Y. Nakanishi, S. Tabata, S. Nishimura, and T. Gotoh. Three-dimensional reconstruction of intramuscular collagen networks of bovine muscle: a demonstration by an immunohistochemical/confocal laser-scanning microscopic method. Anim. S. J. 78:445–447, 2007.

    Article  Google Scholar 

  33. Oak, S. A., Y. W. Zhou, and H. W. Jarrett. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278:39287–39295, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Ott, H. C., T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Palchesko, R. N., L. Zhang, Y. Sun, and A. W. Feinberg. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7:e51499, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pette, D., and G. Vrbova. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689, 1985.

    Article  CAS  PubMed  Google Scholar 

  37. Powell, C. A., B. L. Smiley, J. Mills, and H. H. Vandenburgh. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283:C1557–1565, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Ramaswamy, K. S., M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589:1195–1208, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rando, T. A. The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24:1575–1594, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Rhim, C., D. A. Lowell, M. C. Reedy, D. H. Slentz, S. J. Zhang, W. E. Kraus, and G. A. Truskey. Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel. Muscle Nerve 36:71–80, 2007.

    Article  PubMed  Google Scholar 

  41. Sanger, J. W., J. Wang, Y. Fan, J. White, and J. M. Sanger. Assembly and dynamics of myofibrils. J. Biomed. Biotechnol. 2010:858606, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.

    Article  CAS  PubMed  Google Scholar 

  43. Schultz, E. Fine structure of satellite cells in growing skeletal muscle. Am. J. Anat. 147:49–70, 1976.

    Article  CAS  PubMed  Google Scholar 

  44. Sciandra, F., M. Bozzi, M. Bianchi, E. Pavoni, B. Giardina, and A. Brancaccio. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex. Ann. Ist. Super. Sanita. 39:173–181, 2003.

    CAS  PubMed  Google Scholar 

  45. Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.

    Article  CAS  PubMed  Google Scholar 

  46. Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Szymanski, J. M., Q. Jallerat, and A. W. Feinberg. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly. J. Vis. Exp. 86:e51176, 2014.

    Google Scholar 

  48. Vandenburgh, H. H., P. Karlisch, and L. Farr. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev. Biol. 24:166–174, 1988.

    Article  CAS  PubMed  Google Scholar 

  49. Vandenburgh, H., J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447, 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, P. Y., H. T. Yu, and W. B. Tsai. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol. Bioeng. 106:285–294, 2010.

    Article  CAS  PubMed  Google Scholar 

  51. Wilschut, K. J., H. P. Haagsman, and B. A. Roelen. Extracellular matrix components direct porcine muscle stem cell behavior. Exp. Cell Res. 316:341–352, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Wolf, M. T., K. A. Daly, J. E. Reing, and S. F. Badylak. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33:2916–2925, 2012.

    Article  CAS  PubMed  Google Scholar 

  53. Yaffe, D., and O. Saxel. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727, 1977.

    Article  CAS  PubMed  Google Scholar 

  54. Yamamoto, Y., A. Ito, M. Kato, Y. Kawabe, K. Shimizu, H. Fujita, E. Nagamori, and M. Kamihira. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 108:538–543, 2009.

    Article  CAS  PubMed  Google Scholar 

  55. Zanotti, S., S. Saredi, A. Ruggieri, M. Fabbri, F. Blasevich, S. Romaggi, L. Morandi, and M. Mora. Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes. Matrix Biol. 26:615–624, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Zatti, S., A. Zoso, E. Serena, C. Luni, E. Cimetta, and N. Elvassore. Micropatterning topology on soft substrates affects myoblast proliferation and differentiation. Langmuir 28:2718–2726, 2012.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao, Y., H. Zeng, J. Nam, and S. Agarwal. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol. Bioeng. 102:624–631, 2009.

    Article  CAS  PubMed  Google Scholar 

  58. Zou, K., M. De Lisio, M. A. Miller, D. Olatunbosun, E. Samuel, and M. D. Boppart. Laminin-111 improves skeletal muscle repair following eccentric exercise-induced damage. Med. Sci. Sports Exerc. 46:926–926, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Institutes of Health Director’s New Innovator Award (DP2HL117750) to Adam Feinberg and the John and Claire Bertucci Fellowship from the Carnegie Institute of Technology to Rebecca Duffy. The lab of Johnny Huard at the University of Pittsburgh graciously provided initial aliquots of Cook Myosite human SkMDC and Cook MyoSite Inc. provided assistance with human SkMDC lot selection. We thank Lucas Friedman for providing assistance with image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Feinberg.

Additional information

Associate Editor Akhilesh K Gaharwar oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, R.M., Sun, Y. & Feinberg, A.W. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle. Ann Biomed Eng 44, 2076–2089 (2016). https://doi.org/10.1007/s10439-016-1592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1592-8

Keywords

Navigation